zoukankan      html  css  js  c++  java
  • XmlSerializerFactory Is Pretty Cool[转]

    The XmlSerializerFactory is a new class in .NET 2.0 that provides a factory pattern over the XmlSerializer.  It maintains the cache of generated assemblies so that you can avoid the XmlSerializer leaks.  Usage doesn't impact your code much at all.

    Here is a quick demo that I threw together.  I pulled up my blog's RSS feed and saved it into my Visual Studio project as "XmlFile1.xml".  I then created a schema from it (in Visual Studio, use the "XML/Create Schema" menu item).  Using the schema, I created a serializable class from that schema.  This is simple using the command line tools:

    xsd.exe /classes xmlfile1.xsd xmlfile11.xsd xmlfile12.xsd xmlfile13.xsd

    The result was a set of XML serializable classes that are already decorated with the appropriate attributes for serialization.  The last step is to use the serializable classes with the XmlSerializer.

    public rss GetFeed(Uri location)
    {
    XmlSerializerFactory factory = new XmlSerializerFactory();
    XmlSerializer ser = factory.CreateSerializer(typeof(rss));
    HttpWebRequest request = (HttpWebRequest)WebRequest.Create(location);
    HttpWebResponse response = (HttpWebResponse)request.GetResponse();
    Stream responseStream = response.GetResponseStream();
    rss feed = (rss)ser.Deserialize(responseStream);
    responseStream.Close();
    return feed;
    }

    A bonus is that in .NET 2.0, the generated types will have public properties by default, which enables rapid UI development using data binding.  I created a Windows Form with a grid and used the new databinding features to bind to the generated XML serializable classes, using the ObjectDataSource control.  The result is that my UI code is drastically reduced to create a simple grid UI that displays the data:


    rss feed = GetFeed(new Uri("http://blogs.msdn.com/kaevans/rss.aspx"));           
    this.dataGridView1.DataSource = feed.channel.item;
    this.Text = feed.channel.title + " - " + feed.channel.description;

  • 相关阅读:
    linux下文件的复制、移动与删除
    Hbase万亿级存储性能优化总结-配置
    hbase 读写和优化
    hive数据倾斜定位及处理
    flink初识及安装flink standalone集群
    【Linux】用less查看日志文件
    sqoop的详细使用及原理
    HBase删除数据的原理
    hbase数据加盐(Salting)存储与协处理器查询数据的方法
    Hbase内存磁盘大致关系
  • 原文地址:https://www.cnblogs.com/neozhu/p/977067.html
Copyright © 2011-2022 走看看