zoukankan      html  css  js  c++  java
  • 使用sqoop将mysql数据导入到hadoop

    hadoop的安装配置这里就不讲了。
    Sqoop的安装也很简单。
    完成sqoop的安装后,可以这样测试是否可以连接到mysql(注意:mysql的jar包要放到 SQOOP_HOME/lib 下):
    sqoop list-databases --connect jdbc:mysql://192.168.1.109:3306/ --username root --password 19891231
    结果如下

    即说明sqoop已经可以正常使用了。

    下面,要将mysql中的数据导入到hadoop中。
    我准备的是一个300万条数据的身份证数据表:


    先启动hive(使用命令行:hive 即可启动)

    然后使用sqoop导入数据到hive:
    sqoop import --connect jdbc:mysql://192.168.1.109:3306/hadoop --username root --password 19891231 --table test_sfz --hive-import

    sqoop 会启动job来完成导入工作。



    完成导入用了2分20秒,还是不错的。

    在hive中可以看到刚刚导入的数据表:


    我们来一句sql测试一下数据:
    select * from test_sfz where id < 10;

    可以看到,hive完成这个任务用了将近25秒,确实是挺慢的(在mysql中几乎是不费时间),但是要考虑到hive是创建了job在hadoop中跑,时间当然多。


    接下来,我们会对这些数据进行复杂查询的测试:
    我机子的配置如下:

    hadoop 是运行在虚拟机上的伪分布式,虚拟机OS是ubuntu12.04 64位,配置如下:

    TEST 1 计算平均年龄

    测试数据:300.8 W
    1. 计算广东的平均年龄
    mysql:select (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz where address like '广东%';
    用时: 0.877s

    hive:select (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz where address like '广东%';
    用时:25.012s

    2. 对每个城市的的平均年龄进行从高到低的排序
    mysql:select address, (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz GROUP BY address order by ageAvge desc;
    用时:2.949s

    hive:select address, (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz GROUP BY address order by ageAvge desc;
    用时:51.29s

    可以看到,在耗时上面,hive的增长速度较mysql慢。

    TEST 2

    测试数据:1200W
    mysql 引擎: MyISAM(为了加快查询速度)
    导入到hive:

    1. 计算广东的平均年龄
    mysql:select (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 where address like '广东%';
    用时: 5.642s

    hive:select (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 where address like '广东%';
    用时:168.259s

    2. 对每个城市的的平均年龄进行从高到低的排序
    mysql:select address, (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 GROUP BY address order by ageAvge desc;
    用时:11.964s

    hive:select address, (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 GROUP BY address order by ageAvge desc;
    用时:311.714s

    TEST 3

    测试数据:2000W
    mysql 引擎: MyISAM(为了加快查询速度)
    导入到hive:

    (这次用的时间很短!可能是因为TEST2中的导入时,我的主机在做其他耗资源的工作..)

    1. 计算广东的平均年龄
    mysql:select (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 where address like '广东%';
    用时: 6.605s

    hive:select (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 where address like '广东%';
    用时:188.206s

    2. 对每个城市的的平均年龄进行从高到低的排序
    mysql:select address, (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 GROUP BY address order by ageAvge desc;
    用时:19.926s

    hive:select address, (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 GROUP BY address order by ageAvge desc;
    用时:411.816s




  • 相关阅读:
    Eclipse详细设置护眼背景色和字体颜色并导出
    详解equals()方法和hashCode()方法
    MFC+WinPcap编写一个嗅探器之七(协议)
    fastjson使用
    2017-04-07 开通博客
    开启mysql慢查询
    MYSQL介绍安装及一些问题解决
    python基础入门
    Linux重启与关机命令
    Scanner类与Random类
  • 原文地址:https://www.cnblogs.com/nerve/p/4151598.html
Copyright © 2011-2022 走看看