zoukankan      html  css  js  c++  java
  • C# UTM坐标和WGS84坐标转换小工具

    工具根据:http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html js代码改编

    工具源码github:https://github.com/JeroLong/TUMAndWGS84TransTool.git

    效果:

    主要代码:

    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    
    namespace UTMAndWGS84TransTool
    {
        public class UTMAndWGS84
        {
            static double pi = Math.PI;
    
            /* Ellipsoid model constants (actual values here are for WGS84) */
            static double sm_a = 6378137.0;
            static double sm_b = 6356752.314;
            static double sm_EccSquared = 6.69437999013e-03;
    
            static double UTMScaleFactor = 0.9996;
    
    
            /*
            * DegToRad
            *
            * Converts degrees to radians.
            *
            */
            private static double DegToRad(double deg)
            {
                return (deg / 180.0 * pi);
            }
    
    
    
    
            /*
            * RadToDeg
            *
            * Converts radians to degrees.
            *
            */
            private static double RadToDeg(double rad)
            {
                return (rad / pi * 180.0);
            }
    
    
    
    
            /*
            * ArcLengthOfMeridian
            *
            * Computes the ellipsoidal distance from the equator to a point at a
            * given latitude.
            *
            * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
            * GPS: Theory and Practice, 3rd ed.  New York: Springer-Verlag Wien, 1994.
            *
            * Inputs:
            *     phi - Latitude of the point, in radians.
            *
            * Globals:
            *     sm_a - Ellipsoid model major axis.
            *     sm_b - Ellipsoid model minor axis.
            *
            * Returns:
            *     The ellipsoidal distance of the point from the equator, in meters.
            *
            */
            private static double ArcLengthOfMeridian(double phi)
            {
                double alpha, beta, gamma, delta, epsilon, n;
                double result;
    
                /* Precalculate n */
                n = (sm_a - sm_b) / (sm_a + sm_b);
    
                /* Precalculate alpha */
                alpha = ((sm_a + sm_b) / 2.0)
                   * (1.0 + (Math.Pow(n, 2.0) / 4.0) + (Math.Pow(n, 4.0) / 64.0));
    
                /* Precalculate beta */
                beta = (-3.0 * n / 2.0) + (9.0 * Math.Pow(n, 3.0) / 16.0)
                   + (-3.0 * Math.Pow(n, 5.0) / 32.0);
    
                /* Precalculate gamma */
                gamma = (15.0 * Math.Pow(n, 2.0) / 16.0)
                    + (-15.0 * Math.Pow(n, 4.0) / 32.0);
    
                /* Precalculate delta */
                delta = (-35.0 * Math.Pow(n, 3.0) / 48.0)
                    + (105.0 * Math.Pow(n, 5.0) / 256.0);
    
                /* Precalculate epsilon */
                epsilon = (315.0 * Math.Pow(n, 4.0) / 512.0);
    
                /* Now calculate the sum of the series and return */
                result = alpha
                    * (phi + (beta * Math.Sin(2.0 * phi))
                        + (gamma * Math.Sin(4.0 * phi))
                        + (delta * Math.Sin(6.0 * phi))
                        + (epsilon * Math.Sin(8.0 * phi)));
    
                return result;
            }
    
    
    
            /*
            * UTMCentralMeridian
            *
            * Determines the central meridian for the given UTM zone.
            *
            * Inputs:
            *     zone - An integer value designating the UTM zone, range [1,60].
            *
            * Returns:
            *   The central meridian for the given UTM zone, in radians, or zero
            *   if the UTM zone parameter is outside the range [1,60].
            *   Range of the central meridian is the radian equivalent of [-177,+177].
            *
            */
            private static double UTMCentralMeridian(double zone)
            {
                double cmeridian;
    
                cmeridian = DegToRad(-183.0 + (zone * 6.0));
    
                return cmeridian;
            }
    
    
    
            /*
            * FootpointLatitude
            *
            * Computes the footpoint latitude for use in converting transverse
            * Mercator coordinates to ellipsoidal coordinates.
            *
            * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
            *   GPS: Theory and Practice, 3rd ed.  New York: Springer-Verlag Wien, 1994.
            *
            * Inputs:
            *   y - The UTM northing coordinate, in meters.
            *
            * Returns:
            *   The footpoint latitude, in radians.
            *
            */
            private static double FootpointLatitude(double y)
            {
                double y_, alpha_, beta_, gamma_, delta_, epsilon_, n;
                double result;
    
                /* Precalculate n (Eq. 10.18) */
                n = (sm_a - sm_b) / (sm_a + sm_b);
    
                /* Precalculate alpha_ (Eq. 10.22) */
                /* (Same as alpha in Eq. 10.17) */
                alpha_ = ((sm_a + sm_b) / 2.0)
                    * (1 + (Math.Pow(n, 2.0) / 4) + (Math.Pow(n, 4.0) / 64));
    
                /* Precalculate y_ (Eq. 10.23) */
                y_ = y / alpha_;
    
                /* Precalculate beta_ (Eq. 10.22) */
                beta_ = (3.0 * n / 2.0) + (-27.0 * Math.Pow(n, 3.0) / 32.0)
                    + (269.0 * Math.Pow(n, 5.0) / 512.0);
    
                /* Precalculate gamma_ (Eq. 10.22) */
                gamma_ = (21.0 * Math.Pow(n, 2.0) / 16.0)
                    + (-55.0 * Math.Pow(n, 4.0) / 32.0);
    
                /* Precalculate delta_ (Eq. 10.22) */
                delta_ = (151.0 * Math.Pow(n, 3.0) / 96.0)
                    + (-417.0 * Math.Pow(n, 5.0) / 128.0);
    
                /* Precalculate epsilon_ (Eq. 10.22) */
                epsilon_ = (1097.0 * Math.Pow(n, 4.0) / 512.0);
    
                /* Now calculate the sum of the series (Eq. 10.21) */
                result = y_ + (beta_ * Math.Sin(2.0 * y_))
                    + (gamma_ * Math.Sin(4.0 * y_))
                    + (delta_ * Math.Sin(6.0 * y_))
                    + (epsilon_ * Math.Sin(8.0 * y_));
    
                return result;
            }
    
    
    
            /*
            * MapLatLonToXY
            *
            * Converts a latitude/longitude pair to x and y coordinates in the
            * Transverse Mercator projection.  Note that Transverse Mercator is not
            * the same as UTM; a scale factor is required to convert between them.
            *
            * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
            * GPS: Theory and Practice, 3rd ed.  New York: Springer-Verlag Wien, 1994.
            *
            * Inputs:
            *    phi - Latitude of the point, in radians.
            *    lambda - Longitude of the point, in radians.
            *    lambda0 - Longitude of the central meridian to be used, in radians.
            *
            * Outputs:
            *    xy - A 2-element array containing the x and y coordinates
            *         of the computed point.
            *
            * Returns:
            *    The function does not return a value.
            *
            */
            private static void MapLatLonToXY(double phi, double lambda, double lambda0, out double[] xy)
            {
                double N, nu2, ep2, t, t2, l;
                double l3coef, l4coef, l5coef, l6coef, l7coef, l8coef;
                double tmp;
    
                /* Precalculate ep2 */
                ep2 = (Math.Pow(sm_a, 2.0) - Math.Pow(sm_b, 2.0)) / Math.Pow(sm_b, 2.0);
    
                /* Precalculate nu2 */
                nu2 = ep2 * Math.Pow(Math.Cos(phi), 2.0);
    
                /* Precalculate N */
                N = Math.Pow(sm_a, 2.0) / (sm_b * Math.Sqrt(1 + nu2));
    
                /* Precalculate t */
                t = Math.Tan(phi);
                t2 = t * t;
                tmp = (t2 * t2 * t2) - Math.Pow(t, 6.0);
    
                /* Precalculate l */
                l = lambda - lambda0;
    
                /* Precalculate coefficients for l**n in the equations below
                   so a normal human being can read the expressions for easting
                   and northing
                   -- l**1 and l**2 have coefficients of 1.0 */
                l3coef = 1.0 - t2 + nu2;
    
                l4coef = 5.0 - t2 + 9 * nu2 + 4.0 * (nu2 * nu2);
    
                l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2
                    - 58.0 * t2 * nu2;
    
                l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2
                    - 330.0 * t2 * nu2;
    
                l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2);
    
                l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2);
    
                xy = new double[2];
                /* Calculate easting (x) */
                xy[0] = N * Math.Cos(phi) * l
                    + (N / 6.0 * Math.Pow(Math.Cos(phi), 3.0) * l3coef * Math.Pow(l, 3.0))
                    + (N / 120.0 * Math.Pow(Math.Cos(phi), 5.0) * l5coef * Math.Pow(l, 5.0))
                    + (N / 5040.0 * Math.Pow(Math.Cos(phi), 7.0) * l7coef * Math.Pow(l, 7.0));
    
                /* Calculate northing (y) */
                xy[1] = ArcLengthOfMeridian(phi)
                    + (t / 2.0 * N * Math.Pow(Math.Cos(phi), 2.0) * Math.Pow(l, 2.0))
                    + (t / 24.0 * N * Math.Pow(Math.Cos(phi), 4.0) * l4coef * Math.Pow(l, 4.0))
                    + (t / 720.0 * N * Math.Pow(Math.Cos(phi), 6.0) * l6coef * Math.Pow(l, 6.0))
                    + (t / 40320.0 * N * Math.Pow(Math.Cos(phi), 8.0) * l8coef * Math.Pow(l, 8.0));
    
                return;
            }
    
    
    
            /*
            * MapXYToLatLon
            *
            * Converts x and y coordinates in the Transverse Mercator projection to
            * a latitude/longitude pair.  Note that Transverse Mercator is not
            * the same as UTM; a scale factor is required to convert between them.
            *
            * Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
            *   GPS: Theory and Practice, 3rd ed.  New York: Springer-Verlag Wien, 1994.
            *
            * Inputs:
            *   x - The easting of the point, in meters.
            *   y - The northing of the point, in meters.
            *   lambda0 - Longitude of the central meridian to be used, in radians.
            *
            * Outputs:
            *   philambda - A 2-element containing the latitude and longitude
            *               in radians.
            *
            * Returns:
            *   The function does not return a value.
            *
            * Remarks:
            *   The local variables Nf, nuf2, tf, and tf2 serve the same purpose as
            *   N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect
            *   to the footpoint latitude phif.
            *
            *   x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and
            *   to optimize computations.
            *
            */
            private static void MapXYToLatLon(double x, double y, double lambda0, out double[] xy)
            {
                double phif, Nf, Nfpow, nuf2, ep2, tf, tf2, tf4, cf;
                double x1frac, x2frac, x3frac, x4frac, x5frac, x6frac, x7frac, x8frac;
                double x2poly, x3poly, x4poly, x5poly, x6poly, x7poly, x8poly;
    
                /* Get the value of phif, the footpoint latitude. */
                phif = FootpointLatitude(y);
    
                /* Precalculate ep2 */
                ep2 = (Math.Pow(sm_a, 2.0) - Math.Pow(sm_b, 2.0))
                      / Math.Pow(sm_b, 2.0);
    
                /* Precalculate cos (phif) */
                cf = Math.Cos(phif);
    
                /* Precalculate nuf2 */
                nuf2 = ep2 * Math.Pow(cf, 2.0);
    
                /* Precalculate Nf and initialize Nfpow */
                Nf = Math.Pow(sm_a, 2.0) / (sm_b * Math.Sqrt(1 + nuf2));
                Nfpow = Nf;
    
                /* Precalculate tf */
                tf = Math.Tan(phif);
                tf2 = tf * tf;
                tf4 = tf2 * tf2;
    
                /* Precalculate fractional coefficients for x**n in the equations
                   below to simplify the expressions for latitude and longitude. */
                x1frac = 1.0 / (Nfpow * cf);
    
                Nfpow *= Nf;   /* now equals Nf**2) */
                x2frac = tf / (2.0 * Nfpow);
    
                Nfpow *= Nf;   /* now equals Nf**3) */
                x3frac = 1.0 / (6.0 * Nfpow * cf);
    
                Nfpow *= Nf;   /* now equals Nf**4) */
                x4frac = tf / (24.0 * Nfpow);
    
                Nfpow *= Nf;   /* now equals Nf**5) */
                x5frac = 1.0 / (120.0 * Nfpow * cf);
    
                Nfpow *= Nf;   /* now equals Nf**6) */
                x6frac = tf / (720.0 * Nfpow);
    
                Nfpow *= Nf;   /* now equals Nf**7) */
                x7frac = 1.0 / (5040.0 * Nfpow * cf);
    
                Nfpow *= Nf;   /* now equals Nf**8) */
                x8frac = tf / (40320.0 * Nfpow);
    
                /* Precalculate polynomial coefficients for x**n.
                   -- x**1 does not have a polynomial coefficient. */
                x2poly = -1.0 - nuf2;
    
                x3poly = -1.0 - 2 * tf2 - nuf2;
    
                x4poly = 5.0 + 3.0 * tf2 + 6.0 * nuf2 - 6.0 * tf2 * nuf2
                    - 3.0 * (nuf2 * nuf2) - 9.0 * tf2 * (nuf2 * nuf2);
    
                x5poly = 5.0 + 28.0 * tf2 + 24.0 * tf4 + 6.0 * nuf2 + 8.0 * tf2 * nuf2;
    
                x6poly = -61.0 - 90.0 * tf2 - 45.0 * tf4 - 107.0 * nuf2
                    + 162.0 * tf2 * nuf2;
    
                x7poly = -61.0 - 662.0 * tf2 - 1320.0 * tf4 - 720.0 * (tf4 * tf2);
    
                x8poly = 1385.0 + 3633.0 * tf2 + 4095.0 * tf4 + 1575 * (tf4 * tf2);
                xy = new double[2];
                /* Calculate latitude */
                xy[0] = phif + x2frac * x2poly * (x * x)
                    + x4frac * x4poly * Math.Pow(x, 4.0)
                    + x6frac * x6poly * Math.Pow(x, 6.0)
                    + x8frac * x8poly * Math.Pow(x, 8.0);
    
                /* Calculate longitude */
                xy[1] = lambda0 + x1frac * x
                    + x3frac * x3poly * Math.Pow(x, 3.0)
                    + x5frac * x5poly * Math.Pow(x, 5.0)
                    + x7frac * x7poly * Math.Pow(x, 7.0);
    
                return;
            }
    
    
    
    
            /*
            * LatLonToUTMXY
            *
            * Converts a latitude/longitude pair to x and y coordinates in the
            * Universal Transverse Mercator projection.
            *
            * Inputs:
            *   lat - Latitude of the point, in radians.
            *   lon - Longitude of the point, in radians.
            *   zone - UTM zone to be used for calculating values for x and y.
            *          If zone is less than 1 or greater than 60, the routine
            *          will determine the appropriate zone from the value of lon.
            *
            * Outputs:
            *   xy - A 2-element array where the UTM x and y values will be stored.
            *
            * Returns:
            *   The UTM zone used for calculating the values of x and y.
            *
            */
            public static double[] LatLonToUTMXY(double lat, double lon)
            {
                double zone = Math.Floor((lon + 180.0) / 6) + 1;
                double[] xy = new double[2];
                MapLatLonToXY(DegToRad(lat),DegToRad (lon), UTMCentralMeridian(zone), out xy);
    
                /* Adjust easting and northing for UTM system. */
                xy[0] = xy[0] * UTMScaleFactor + 500000.0;
                xy[1] = xy[1] * UTMScaleFactor;
                if (xy[1] < 0.0)
                    xy[1] = xy[1] + 10000000.0;
    
                return new double[] { xy[0], xy[1], zone };
            }
    
    
    
            /*
            * UTMXYToLatLon
            *
            * Converts x and y coordinates in the Universal Transverse Mercator
            * projection to a latitude/longitude pair.
            *
            * Inputs:
            *    x - The easting of the point, in meters.
            *    y - The northing of the point, in meters.
            *    zone - The UTM zone in which the point lies.
            *    southhemi - True if the point is in the southern hemisphere;
            *               false otherwise.
            *
            * Outputs:
            *    latlon - A 2-element array containing the latitude and
            *            longitude of the point, in radians.
            *
            * Returns:
            *    The function does not return a value.
            *
            */
            public static double[] UTMXYToLatLon(double x, double y, double zone, bool southhemi)
            {
                double cmeridian;
    
                x -= 500000.0;
                x /= UTMScaleFactor;
    
                /* If in southern hemisphere, adjust y accordingly. */
                if (southhemi)
                    y -= 10000000.0;
    
                y /= UTMScaleFactor;
    
                cmeridian = UTMCentralMeridian(zone);
                double[] xy = new double[2];
                MapXYToLatLon(x, y, cmeridian, out xy);
                xy[0] = RadToDeg(xy[0]);
                xy[1] = RadToDeg(xy[1]);
                return xy;
            }
        }
    }
  • 相关阅读:
    【★】深入BGP原理和思想【第一部】
    自制ACL+DHCP实验(初版)
    自制ACL+DHCP实验(初版)
    交换机端口呈现err-disable的原因
    交换机端口呈现err-disable的原因
    ★不容错过的PPT教程!
    ★不容错过的PPT教程!
    自制STP配置实验
    CCNA+NP学习笔记—交换网络篇
    CCNA+NP学习笔记—交换网络篇
  • 原文地址:https://www.cnblogs.com/netlzl/p/11926341.html
Copyright © 2011-2022 走看看