zoukankan      html  css  js  c++  java
  • 判断一棵二叉树是否为AVL树

    思路:AVL树是高度平衡的二叉搜索树,这里为了清晰说明,分别判断是否为搜索树,是否为平衡树。

    struct TreeNode
    {
        struct TreeNode *left;
        struct TreeNode *right;
        int key;
    };
    //这里先判断是否为二叉搜索树,其次判断是否为平衡的
    bool IsAVL(TreeNode *root,int depth)
    {
        if (isBST(root)&&isBalance(root,&depth))
        return true;
        return false;
    }
    
    //判断是否为二叉搜索树
    bool isBST(TreeNode *root)
    {
        if(root == NULL)return true;
        if (!isBST(root->left))return false;
        if (!isBST(root->right))return false;
        TreeNode *cur = root->left;
        if (cur != NULL)
        {
            while(cur->right!=NULL)cur = cur->right;
            if(root->key < cur->key)return false;
        }
        TreeNode *cur = root->right;
        if (cur != NULL)
        {
            while(cur->left!=NULL)cur = cur->left;
            if(root->key > cur->key)return false;
        }
        return true;
    }
    
    //判断是否平衡
    bool isBalance(TreeNode *root,int *depth)
    {
        if (root == NULL)
        {
            *depth = 0;
            return true;
        }
        int depthl,depthr;
        if(!isBalance(root->left,&depthl))return false;
        if(!isBalance(root->right,&depthr))return false;
        int diff = depthl - depthr;
        if(diff > 1 || diff < -1)return false;
        *depth = 1+(depthl>depthr?depthl:depthr);
        return true;
    }
  • 相关阅读:
    关于类型转换构造函数的疑惑点
    类模板与静态 成员变量
    模板与友元
    类模板与派生
    类模板
    函数模板
    泛型程序设计基本概念
    3、成员函数
    条款 06:若不想使用编译器自动生成的函数,就该明确拒绝
    PHP操作redis
  • 原文地址:https://www.cnblogs.com/newpanderking/p/3969557.html
Copyright © 2011-2022 走看看