zoukankan      html  css  js  c++  java
  • POJ-3304 Segments

    题意:给出n条线段,问是否存在一条直线使所有线段在其上的映射有至少一个共点

    假设找到了这条直线,那过共点作直线的垂线必然与n条线段相交,就相当于问是否存在直线可以与所有线段相交

    (n^2)枚举直线,然后(O(n))判断

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int maxn=1e3+100;
    const double eps=1e-8;
    struct Point{
    	double x,y;
    	Point(double xx=0,double yy=0){
    		x=xx,y=yy;
    	}
    }s[maxn],t[maxn];
    struct Vector{
    	double x,y;
    	Vector(double xx=0,double yy=0){
    		x=xx,y=yy;
    	}
    };
    int dcmp(double x){return fabs(x)<eps?0:(x>0?1:-1);}
    Vector operator - (Point a,Point b){return Vector(a.x-b.x,a.y-b.y);}
    double operator * (Vector a,Vector b){return a.x*b.y-a.y*b.x;}
    int tt,n;
    /*bool segment(Point a,Point b,Point c,Point d){
    	Vector x=b-a,y=d-c;
    	Vector v1=c-a,v2=d-a;
    	if(dcmp(x*v1)*dcmp(x*v2)>0) return 0;
    	v1=a-c,v2=b-c;
    	if(dcmp(y*v1)*dcmp(y*v2)>0) return 0;
    	return 1;
    }*/
    bool check(Point x,Point y){
    	if(dcmp(x.x-y.x)==0&&dcmp(x.y-y.y)==0) return 0;
    	for(int i=1;i<=n;i++)
    		if(((y-x)*(s[i]-x))*((y-x)*(t[i]-x))>eps)
    			return 0;
    	return 1;
    }
    int main(){
    	scanf("%d",&tt);
    	while(tt--){
    		scanf("%d",&n);
    		for(int i=1;i<=n;i++)
    			scanf("%lf%lf%lf%lf",&s[i].x,&s[i].y,&t[i].x,&t[i].y);
    		bool ok=0;
    		for(int i=1;i<=n;i++){
    			for(int j=1;j<=n;j++)
    				if(check(s[i],t[j])||check(s[i],s[j])||check(t[i],t[j])||check(t[i],s[j])){
    					ok=1;
    					break;
    				}
    			if(ok) break;
    		}
    		if(ok) printf("Yes!
    ");
    		else printf("No!
    ");
    	}
    	return 0;
    }
    
  • 相关阅读:
    异步文档树解决方案
    兼容IE低版本的文件上传解决方案
    CentOS-常用命令(版本:7.x)
    搭建Nexus3私服(含使用说明,支持CentOS、Windows)
    CentOS-搭建MinIO集群
    GitLab升级(yum安装版v11.11.8~12.0.12)
    yum安装GitLab-v11.11.8(git私服)
    Docker中容器的备份和恢复(可迁移)
    Nexus3配置yum私服
    局域网连接数据慢的方法汇总
  • 原文地址:https://www.cnblogs.com/nianheng/p/10010080.html
Copyright © 2011-2022 走看看