zoukankan      html  css  js  c++  java
  • 【二叉树】二叉树常用算法的C++实现

    常见算法有:

    1.求二叉树的最大深度

    2.求二叉树的最小深度

    3.二叉树的层次遍历

    4.二叉树的前序遍历

    5.二叉树的中序遍历

    6.二叉树的后序遍历

    7.求二叉树的节点个数

    8.求二叉树的叶节点个数

    9.判断二叉树是否为平衡二叉树

    10.判断二叉树是否为满二叉树

    11.判断两个二叉树是否完全相同

    12.判断二叉树是否为二叉搜索树

    13.将有序数组转换为二叉搜索树

    14.镜像翻转二叉树

    15.二叉树的“之”字形遍历

    16.判断两个二叉树是否互为镜像

    17.判断一个二叉树本身是否为镜像二叉树(对称二叉树)

    18.求两个节点最近的公共祖先

    19.判断两个节点是否为堂兄弟(深度相同且父节点不同)

    (涉及到的相关概念不再累述)

    0.二叉树结构体定义

    struct TreeNode{
        int val;
        TreeNode* left;
        TreeNode* right;
        TreeNode(int x) : val(x), left(NULL), right(NULL) {}
    };

    1.求二叉树的最大深度

    int maxDepth(TreeNode* root){
        if (root == NULL)  return 0;
        int left = maxDepth(root->left);
        int right = maxDepth(root->right);
        return max(left, right) + 1;
    }

    2.求二叉树的最小深度

    int minDepth(TreeNode* root){
        if (root == NULL)  return 0;
        return getMin(root);
    }
    int getMin(TreeNode* root){
        if (root == NULL)  return INT_MAX;
        if (root->left == NULL && root->right == NULL)  return 1;
        return min(getMin(root->left), getMin(root->right)) + 1;
    }

    3.二叉树的层次遍历

    
    
    void levelView(TreeNode* root){
        vector<int> s;
        queue<TreeNode*> p, q;
        p.push(root);
    q = p; while (!p.empty()){ p = queue<TreeNode*>(); s.clear(); while (!q.empty()){ TreeNode* tmp = q.front(); q.pop(); s.push_back(tmp->val); if (tmp->left != NULL) p.push(tmp->left); if (tmp->right != NULL) p.push(tmp->right); } for (auto i : s) cout << i << " "; cout << endl; q = p; } }

    4.二叉树的前序遍历

    void preView(TreeNode* root){
        if (root != NULL){
            cout << root->val << " ";
            preView(root->left);
            preView(root->right);
        }
    }

    5.二叉树的中序遍历

    void midView(TreeNode* root){
        if (root != NULL){
            midView(root->left);
            cout << root->val << " ";
            midView(root->right);
        }
    }

    6.二叉树的后序遍历

    void postView(TreeNode* root){
        if (root != NULL){
            postView(root->left);
            postView(root->right);
            cout << root->val << " ";
        }
    }

    7.求二叉树的节点个数

    int nodeNumbers(TreeNode* root){
        if (root == NULL)  return 0;
        int left = nodeNumbers(root->left);
        int right = nodeNumbers(root->right);
        return left + right + 1;
    }

    8.求二叉树的叶节点个数

    int leafNodeNumbers(TreeNode* root){
        if (root == NULL)  return 0;
        if (root->left == NULL && root->right == NULL)  return 1;
        return leafNodeNumbers(root->left) + leafNodeNumbers(root->right);
    }

    9.判断二叉树是否为平衡二叉树

    int countFloor(TreeNode* root){//计算层数
        if (!root)  return 0;
        return 1 + max(countFloor(root->left), countFloor(root->right));
    }
    bool isBalanced(TreeNode* root) {
        if (!root)  return true;
        if (abs(countFloor(root->left) - countFloor(root->right)) > 1)  return false;
        else  return isBalanced(root->left) && isBalanced(root->right);
    }

    10.判断二叉树是否为满二叉树

    bool isFullTree(TreeNode* root){
        if (root == NULL)  return true;
        int n = nodeNumbers(root) + 1;//满二叉树节点数为2^n-1,利用算法7求节点数
        while (n > 1){
            if (n % 2 == 1)  return false;
            n /= 2;
        }
        return true;
    }

    11.判断两个树是否完全相同

    bool isSameTree(TreeNode* p, TreeNode* q) {
        if (!p && !q) return true;
        if (q != NULL && p != NULL){
            if (q->val != p->val) return false;
            else return isSameTree(p->left, q->left) && isSameTree(p->right, q->right);
        } else
            return false;
    }

    12.判断二叉树是否为二叉搜索树

    void midView(TreeNode* p, vector<int> &s){
        if (p){
            midView(p->left, s);
            s.push_back(p->val);
            midView(p->right, s);
        }
    }
    bool isValidBST(TreeNode* root) {
        vector<int> s;
        midView(root, s);
        if (s.size() < 2)  return true;
        for (int i = 0; i < s.size() - 1; i++){
            if (s[i] >= s[i + 1])  return false;
        }
        return true;
    }

    13.将有序数组转换为二叉搜索树

    TreeNode* buildTree(vector<int> &num, int left, int right) {
        if (left > right) return NULL;
        int mid = (left + right) / 2;
        TreeNode* cur = new TreeNode(num[mid]);
        cur->left = buildTree(num, left, mid - 1);
        cur->right = buildTree(num, mid + 1, right);
        return cur;
    }
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        return buildTree(nums, 0, nums.size() - 1);
    }

    14.镜像翻转二叉树

    TreeNode* invertTree(TreeNode* root) {
        if (root != NULL){
            TreeNode *tmp = root->left;
            root->left = root->right;
            root->right = tmp;
            invertTree(root->left);
            invertTree(root->right);
        }
        return root;
    }

    15.二叉树之字形遍历(第一层从左往右遍历,第二层从右往左遍历,第三次从左往右…)

    vector<vector<int> > zigzagLevelOrder(TreeNode* root) {
        vector<vector<int> > s;
        bool change = false;
        if (root == NULL)  return s;
        queue<TreeNode*> p;
        p.push(root);
        vector<int> t;
        queue<TreeNode*> q = p;
        t.push_back(root->val);
        while (!q.empty()){
            q = queue<TreeNode*>();
            t.clear();
            while (!p.empty()){
                TreeNode* tmp = p.front();
                t.push_back(tmp->val);
                p.pop();
                if (tmp->left != NULL)  q.push(tmp->left);
                if (tmp->right != NULL)  q.push(tmp->right);
            }
            p = q;
            if (change){
                change = false;
                reverse(t.begin(), t.end());
            } else  change = true;
            s.push_back(t);
        }
        return s;
    }

    16.判断两个二叉树是否互为镜像

    bool isMirror(TreeNode* p, TreeNode* q){
        if (p == NULL && q == NULL)  return true;
        if (p == NULL || q == NULL)  return false;
        if (p->val != q->val)  return false;
        return isMirror(p->left, q->right) && isMirror(p->right, q->left);
    }

    17.判断二叉树本身是否为镜像二叉树

    bool isMirrorTree(TreeNode* root){
        return isMirror(root, root);//利用算法16,如果一个树是镜像的,那么它和自己本身互为镜像
    }

    18.求二叉树中两个节点的最近公共祖先

    void help(TreeNode* p, map<TreeNode*, TreeNode*> &q){
        if (p){
            if (p->left)  q[p->left] = p;
            if (p->right)  q[p->right] = p;
            help(p->left, q);
            help(p->right, q);
        }
    }
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        map<TreeNode*, TreeNode*> m;
        TreeNode* head = root;
        help(root, m);
        if (m[p] == q)  return q;
        if (m[q] == p)  return p;
        while (p != head){
            TreeNode* tmp = q;
            while (tmp != head){
                if (p == tmp || m[tmp] == p)  return p;
                if (m[p] == tmp)  return tmp;
                tmp = m[tmp];
            }
            p = m[p];
        }
        return head;
    }

    19.判断二叉树中两个节点是否为堂兄弟(深度相同但父节点不同)

    void help(TreeNode *root, map<int, int> &p){
        if (root != NULL){
            if (root->left != NULL)  p[root->left->val] = root->val;
            if (root->right != NULL)  p[root->right->val] = root->val;
            help(root->left, p);
            help(root->right, p);
        }
    }
    map<int, int> p;
    bool isCousins(TreeNode* root, int x, int y) {
        help(root, p);
        if (p[x] == 0 || p[y] == 0)  return false;
        if (p[x] == p[y])  return false;
        int xi = 0, yi = 0;
        while (p[x] != p[y]){
            if (p[p[x]] != 0){
                x = p[x];
                xi++;
            }
            if (p[p[y]] != 0){
                y = p[y];
                yi++;
            }
        }
        return xi == yi;
    }
  • 相关阅读:
    ubuntu16.04自动删除内核
    禅道服务数据的迁移
    k8s常用命令3
    使用logstash迁移es集群数据
    es集群迁移脚本
    helm常用命令1
    【操作】python2升级到python3
    【推荐】构建脚本之shell编写规范
    【推荐】linux使用zip命令
    Sublime使用大全
  • 原文地址:https://www.cnblogs.com/nibolyoung/p/11692023.html
Copyright © 2011-2022 走看看