JAVA+大数搞了一遍- -
不是很麻烦- -
/*
HDU 6093 - Rikka with Number [ 进制转换,康托展开,大数 ] | 2017 Multi-University Training Contest 5
题意:
求L,R之间的好数的个数,好数要求在某个d(>=2)进制下数位是0到d-1的
分析:
d 进制下好数的个数为 d!-(d-1)! ,且满足 d^(d-1) <= K <= d^d
可知 若 N > d^d 则 1-N 包含前 d-1 个进制的所有好数
寻找零界 d 可以二分,将 N 和 d^d 比大小
计算临界的 d 进制的好数,用类似康托展开的过程
即 对于 (x0, x1, x2...xn),转化成
首位小于x0的所有排列+ 首位等于x0第二位小于x1的所有排列+....
*/
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
static Scanner cin = new Scanner(System.in);
static long MOD = 998244353;
static BigInteger a[] = new BigInteger[2000];
static long F[] = new long[2000];
static BigInteger bb;
static String s;
static int [] b = new int[5005];
static int [] c = new int[5005];
static int lc, lb;
static void init() {
F[0] = 1;
for (int i = 1; i < 2000; i++) F[i] = F[i-1] * i % MOD;
for (int i = 1; i < 2000; i++) a[i] = BigInteger.valueOf(i).pow(i);
}
static int BinaryFind(){
int l = 2, r = 1999, mid = 0;
while (l <= r) {
mid = (l+r)/2;
if (bb.compareTo(a[mid]) >= 0) l = mid+1;
else r = mid-1;
}
return l;
}
static void change(int m) {
lc = 0;
while (lb > -0) {
int x = 0;
for (int i = lb-1; i >= 0; i--) {
x = x*10 + b[i];
b[i] = x/m;
x %= m;
}
c[lc++] = x; while (lb > 0 && b[lb-1] == 0) lb--;
}
}
static int[] vis = new int[5005];
static long solve(){
int m = BinaryFind();
change(m);
long ans = F[m-1] - F[1];
if (m > lc) return ans;
for (int i = 0; i < m; i++) vis[i] = 0;
for (int i = 1; i < c[lc-1]; i++)
if (vis[i] == 0)
ans = (ans + F[lc-1]) % MOD;
vis[c[lc-1]] = 1;
for (int i = lc-2; i >= 0; i--)
{
for (int j = 0; j < c[i]; j++)
if (vis[j] == 0)
ans = (ans + F[i]) % MOD;
if (vis[c[i]] == 1) break;
vis[c[i]] = 1;
if (i == 0) ans = (ans + 1) % MOD;
}
return ans;
}
public static void main(String[] args) {
init();
int t = cin.nextInt();
while ((t--) != 0) {
bb = cin.nextBigInteger();
s = bb.toString();
lb = s.length();
for (int i = 0; i < lb; i++) {
b[i] = (int)(s.charAt(lb-1-i) - '0');
}
b[0]--;
for (int i = 0; i < lb; i++) {
if (b[i] < 0) {
b[i] += 10; b[i+1]--;
}
else break;
}
while (lb > 0 && b[lb-1] == 0) lb--;
long ans = solve();
bb = cin.nextBigInteger();
s = bb.toString();
lb = s.length();
for (int i = 0; i < lb; i++) {
b[i] = (int)(s.charAt(lb-1-i) - '0');
}
ans = (MOD + solve() - ans) % MOD;
System.out.println(ans);
}
}
}