zoukankan      html  css  js  c++  java
  • 测试(张量)- 实战

    目录

      import tensorflow as tf
      from tensorflow import keras
      from tensorflow.keras import datasets
      import os
      
      # do not print irrelevant information
      # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
      
      # x: [60k,28,28], [10,28,28]
      # y: [60k], [10k]
      (x, y), (x_test, y_test) = datasets.mnist.load_data()
      
      # transform Tensor
      # x: [0~255] ==》 [0~1.]
      x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
      y = tf.convert_to_tensor(y, dtype=tf.int32)
      
      x_test = tf.convert_to_tensor(x_test, dtype=tf.float32) / 255.
      y_test = tf.convert_to_tensor(y_test, dtype=tf.int32)
      
      f'x.shape: {x.shape}, y.shape: {y.shape}, x.dtype: {x.dtype}, y.dtype: {y.dtype}'
      
      "x.shape: (60000, 28, 28), y.shape: (60000,), x.dtype: <dtype: 'float32'>, y.dtype: <dtype: 'int32'>"
      
      f'min_x: {tf.reduce_min(x)}, max_x: {tf.reduce_max(x)}'
      
      'min_x: 0.0, max_x: 1.0'
      
      f'min_y: {tf.reduce_min(y)}, max_y: {tf.reduce_max(y)}'
      
      'min_y: 0, max_y: 9'
      
      # batch of 128
      train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
      test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(128)
      train_iter = iter(train_db)
      sample = next(train_iter)
      f'batch: {sample[0].shape,sample[1].shape}'
      
      'batch: (TensorShape([128, 28, 28]), TensorShape([128]))'
      
      # [b,784] ==> [b,256] ==> [b,128] ==> [b,10]
      # [dim_in,dim_out],[dim_out]
      w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
      b1 = tf.Variable(tf.zeros([256]))
      w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
      b2 = tf.Variable(tf.zeros([128]))
      w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
      b3 = tf.Variable(tf.zeros([10]))
      
      # learning rate
      lr = 1e-3
      
      for epoch in range(10):  # iterate db for 10
          # tranin every train_db
          for step, (x, y) in enumerate(train_db):
              # x: [128,28,28]
              # y: [128]
      
              # [b,28,28] ==> [b,28*28]
              x = tf.reshape(x, [-1, 28 * 28])
      
              with tf.GradientTape(
              ) as tape:  # only data types of tf.variable are logged
                  # x: [b,28*28]
                  # h1 = x@w1 + b1
                  # [b,784]@[784,256]+[256] ==> [b,256] + [256] ==> [b,256] + [b,256]
                  h1 = x @ w1 + tf.broadcast_to(b1, [x.shape[0], 256])
                  h1 = tf.nn.relu(h1)
                  # [b,256] ==> [b,128]
                  # h2 = x@w2 + b2  # b2 can broadcast automatic
                  h2 = h1 @ w2 + b2
                  h2 = tf.nn.relu(h2)
                  # [b,128] ==> [b,10]
                  out = h2 @ w3 + b3
      
                  # compute loss
                  # out: [b,10]
                  # y:[b] ==> [b,10]
                  y_onehot = tf.one_hot(y, depth=10)
      
                  # mse = mean(sum(y-out)^2)
                  # [b,10]
                  loss = tf.square(y_onehot - out)
                  # mean:scalar
                  loss = tf.reduce_mean(loss)
      
              # compute gradients
              grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
              # w1 = w1 - lr * w1_grad
              # w1 = w1 - lr * grads[0]  # not in situ update
              # in situ update
              w1.assign_sub(lr * grads[0])
              b1.assign_sub(lr * grads[1])
              w2.assign_sub(lr * grads[2])
              b2.assign_sub(lr * grads[3])
              w3.assign_sub(lr * grads[4])
              b3.assign_sub(lr * grads[5])
      
              if step % 100 == 0:
                  print(f'epoch:{epoch}, step: {step}, loss:{float(loss)}')
                  
          # [w1,b1,w2,b2,w3,b3]
          total_correct, total_num = 0, 0
          for step, (x, y) in enumerate(test_db):
              # [b,28,28] ==> [b,28*28]
              x = tf.reshape(x, [-1, 28 * 28])
      
              # [b,784] ==> [b,256] ==> [b,128] ==> [b,10]
              h1 = tf.nn.relu(x @ w1 + b1)
              h2 = tf.nn.relu(h1 @ w2 + b2)
              out = h2 @ w3 + b3
      
              # out: [b,10] ~ R
              # prob: [b,10] ~ (0,1)
              prob = tf.nn.softmax(out, axis=1)
              # [b,10] ==> [b]
              pred = tf.argmax(prob, axis=1)
              pred = tf.cast(pred, dtype=tf.int32)
              # y: [b]
              # [b], int32
              correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
              correct = tf.reduce_sum(correct)
      
              total_correct += int(correct)
              total_num += x.shape[0]
          acc = total_correct / total_num
          print(f'test acc: {acc}')
      
      epoch:0, step: 0, loss:0.4985736012458801
      epoch:0, step: 100, loss:0.22939381003379822
      epoch:0, step: 200, loss:0.2018660604953766
      epoch:0, step: 300, loss:0.18181894719600677
      epoch:0, step: 400, loss:0.1831897795200348
      test acc: 0.1153
      epoch:1, step: 0, loss:0.1674182116985321
      epoch:1, step: 100, loss:0.17186065018177032
      epoch:1, step: 200, loss:0.16210347414016724
      epoch:1, step: 300, loss:0.1499405801296234
      epoch:1, step: 400, loss:0.15070970356464386
      test acc: 0.1769
      epoch:2, step: 0, loss:0.14020009338855743
      epoch:2, step: 100, loss:0.14754906296730042
      epoch:2, step: 200, loss:0.13924123346805573
      epoch:2, step: 300, loss:0.1308508813381195
      epoch:2, step: 400, loss:0.1306917369365692
      test acc: 0.235
      epoch:3, step: 0, loss:0.12297296524047852
      epoch:3, step: 100, loss:0.13165466487407684
      epoch:3, step: 200, loss:0.12420644611120224
      epoch:3, step: 300, loss:0.1179303377866745
      epoch:3, step: 400, loss:0.11716334521770477
      test acc: 0.2927
      epoch:4, step: 0, loss:0.11098697036504745
      epoch:4, step: 100, loss:0.12046296894550323
      epoch:4, step: 200, loss:0.11333265155553818
      epoch:4, step: 300, loss:0.10868857055902481
      epoch:4, step: 400, loss:0.10756760835647583
      test acc: 0.3386
      epoch:5, step: 0, loss:0.1022152453660965
      epoch:5, step: 100, loss:0.1120707243680954
      epoch:5, step: 200, loss:0.10497119277715683
      epoch:5, step: 300, loss:0.10168357938528061
      epoch:5, step: 400, loss:0.10033649206161499
      test acc: 0.379
      epoch:6, step: 0, loss:0.09566861391067505
      epoch:6, step: 100, loss:0.10548736900091171
      epoch:6, step: 200, loss:0.09834134578704834
      epoch:6, step: 300, loss:0.0961376205086708
      epoch:6, step: 400, loss:0.09474694728851318
      test acc: 0.4168
      epoch:7, step: 0, loss:0.09054075181484222
      epoch:7, step: 100, loss:0.1001550704240799
      epoch:7, step: 200, loss:0.09303966909646988
      epoch:7, step: 300, loss:0.09163998067378998
      epoch:7, step: 400, loss:0.09031815826892853
      test acc: 0.453
      epoch:8, step: 0, loss:0.08635123074054718
      epoch:8, step: 100, loss:0.0957597866654396
      epoch:8, step: 200, loss:0.08867798745632172
      epoch:8, step: 300, loss:0.08790989965200424
      epoch:8, step: 400, loss:0.08668653666973114
      test acc: 0.4831
      epoch:9, step: 0, loss:0.08282895386219025
      epoch:9, step: 100, loss:0.09203790128231049
      epoch:9, step: 200, loss:0.0850382000207901
      epoch:9, step: 300, loss:0.08473993837833405
      epoch:9, step: 400, loss:0.0835738554596901
      test acc: 0.5065
      
      
      

      15 测试(张量)- 实战

    • 相关阅读:
      c++vector(入门级)
      端口扫描(TCP)
      推荐安全程序员的书单(系统、网络、安全等)
      My latest news(--2016.12.31)
      HTML+JS+DOM【选项卡自动切换】
      20170916考试总结
      [Usaco2014 Mar]Sabotage
      [SHOI2014]概率充电器
      [Usaco2010 Dec]Exercise 奶牛健美操
      [JZOJ4687]奇袭
    • 原文地址:https://www.cnblogs.com/nickchen121/p/10877191.html
    Copyright © 2011-2022 走看看