zoukankan      html  css  js  c++  java
  • 池化与采样

    Outline

    • Pooling

    • upsample

    • ReLU

    Reduce Dim

    36-池化与采样-降维.jpg

    subsample

    Max/Avg pooling

    • stride = 2

    36-池化与采样-池化.jpg

    Strides

    • stride = 1

    36-池化与采样-池化步长1.jpg

    For instance

    36-池化与采样-池化all.jpg

    import tensorflow as tf
    from tensorflow.keras import layers
    
    x = tf.random.normal([1, 14, 14, 4])
    x.shape
    
    TensorShape([1, 14, 14, 4])
    
    pool = layers.MaxPool2D(2, strides=2)
    out = pool(x)
    out.shape
    
    TensorShape([1, 7, 7, 4])
    
    pool = layers.MaxPool2D(3, strides=2)
    out = pool(x)
    out.shape
    
    TensorShape([1, 6, 6, 4])
    
    out = tf.nn.max_pool2d(x, 2, strides=2, padding='VALID')
    out.shape
    
    TensorShape([1, 7, 7, 4])
    

    upsample

    • nearest

    • bilinear

    36-池化与采样-上采样.jpg

    UpSampling2D

    x = tf.random.normal([1, 7, 7, 4])
    x.shape
    
    TensorShape([1, 7, 7, 4])
    
    layer = layers.UpSampling2D(size=3)
    out = layer(x)
    out.shape
    
    TensorShape([1, 21, 21, 4])
    
    layer = layers.UpSampling2D(size=2)
    out = layer(x)
    out.shape
    
    TensorShape([1, 14, 14, 4])
    

    ReLu

    36-池化与采样-relu.jpg

    x = tf.random.normal([2,3])
    x
    
    <tf.Tensor: id=76, shape=(2, 3), dtype=float32, numpy=
    array([[-0.30181265,  0.39785287, -0.78380096],
           [ 0.6593401 , -0.40962896, -0.3656048 ]], dtype=float32)>
    
    tf.nn.relu(x)
    x
    
    <tf.Tensor: id=76, shape=(2, 3), dtype=float32, numpy=
    array([[-0.30181265,  0.39785287, -0.78380096],
           [ 0.6593401 , -0.40962896, -0.3656048 ]], dtype=float32)>
    
    layers.ReLU()(x)
    
    <tf.Tensor: id=80, shape=(2, 3), dtype=float32, numpy=
    array([[0.        , 0.39785287, 0.        ],
           [0.6593401 , 0.        , 0.        ]], dtype=float32)>
  • 相关阅读:
    年底送书活动:送出6本技术书籍,价值372元!
    (7)ASP.NET WEB服务器控件
    (6)DataTable 转换成 Json
    (9)C#连mysql
    (8)C#连sqlserver
    VM虚拟机
    (7)C#连DB2---oledb方式
    (48)C#网络4 web
    远程桌面
    (47)C#运行时序列化
  • 原文地址:https://www.cnblogs.com/nickchen121/p/10930571.html
Copyright © 2011-2022 走看看