zoukankan      html  css  js  c++  java
  • Auto-Encoders实战

    Outline

    • Auto-Encoder

    • Variational Auto-Encoders

    Auto-Encoder

    51-AutoEncoders实战-autoencoder.jpg

    创建编解码器

    import os
    import tensorflow as tf
    import numpy as np
    from tensorflow import keras
    from tensorflow.keras import Sequential, layers
    from PIL import Image
    from matplotlib import pyplot as plt
    
    tf.random.set_seed(22)
    np.random.seed(22)
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    assert tf.__version__.startswith('2.')
    
    
    def save_images(imgs, name):
        new_im = Image.new('L', (280, 280))
    
        index = 0
        for i in range(0, 280, 28):
            for j in range(0, 280, 28):
                im = imgs[index]
                im = Image.fromarray(im, mode='L')
                new_im.paste(im, (i, j))
                index += 1
    
        new_im.save(name)
    
    
    h_dim = 20  # 784降维20维
    batchsz = 512
    lr = 1e-3
    
    (x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
    x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(
        np.float32) / 255.
    # we do not need label
    train_db = tf.data.Dataset.from_tensor_slices(x_train)
    train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
    test_db = tf.data.Dataset.from_tensor_slices(x_test)
    test_db = test_db.batch(batchsz)
    
    print(x_train.shape, y_train.shape)
    print(x_test.shape, y_test.shape)
    
    
    class AE(keras.Model):
        def __init__(self):
            super(AE, self).__init__()
    
            # Encoders
            self.encoder = Sequential([
                layers.Dense(256, activation=tf.nn.relu),
                layers.Dense(128, activation=tf.nn.relu),
                layers.Dense(h_dim)
            ])
    
            # Decoders
            self.decoder = Sequential([
                layers.Dense(128, activation=tf.nn.relu),
                layers.Dense(256, activation=tf.nn.relu),
                layers.Dense(784)
            ])
    
        def call(self, inputs, training=None):
            # [b,784] ==> [b,19]
            h = self.encoder(inputs)
    
            # [b,10] ==> [b,784]
            x_hat = self.decoder(h)
    
            return x_hat
    
    
    model = AE()
    model.build(input_shape=(None, 784))  # tensorflow尽量用元组
    model.summary()
    
    (60000, 28, 28) (60000,)
    (10000, 28, 28) (10000,)
    Model: "ae"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    sequential (Sequential)      multiple                  236436    
    _________________________________________________________________
    sequential_1 (Sequential)    multiple                  237200    
    =================================================================
    Total params: 473,636
    Trainable params: 473,636
    Non-trainable params: 0
    _________________________________________________________________
    

    训练

    optimizer = tf.optimizers.Adam(lr=lr)
    
    for epoch in range(10):
    
        for step, x in enumerate(train_db):
    
            # [b,28,28]==>[b,784]
            x = tf.reshape(x, [-1, 784])
    
            with tf.GradientTape() as tape:
                x_rec_logits = model(x)
    
                rec_loss = tf.losses.binary_crossentropy(x,
                                                         x_rec_logits,
                                                         from_logits=True)
                rec_loss = tf.reduce_min(rec_loss)
    
            grads = tape.gradient(rec_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))
    
            if step % 100 == 0:
                print(epoch, step, float(rec_loss))
                
                # evaluation
    
            x = next(iter(test_db))
            logits = model(tf.reshape(x, [-1, 784]))
            x_hat = tf.sigmoid(logits)
            # [b,784]==>[b,28,28]
            x_hat = tf.reshape(x_hat, [-1, 28, 28])
    
            # [b,28,28] ==> [2b,28,28]
            x_concat = tf.concat([x, x_hat], axis=0)
            # x_concat = x  # 原始图片
            x_concat = x_hat
            x_concat = x_concat.numpy() * 255.
            x_concat = x_concat.astype(np.uint8)  # 保存为整型
            if not os.path.exists('ae_images'):
                os.mkdir('ae_images')
            save_images(x_concat, 'ae_images/rec_epoch_%d.png' % epoch)
    
    0 0 0.09717604517936707
    0 100 0.12493347376585007
    1 0 0.09747321903705597
    1 100 0.12291513383388519
    2 0 0.10048121958971024
    2 100 0.12292417883872986
    3 0 0.10093794018030167
    3 100 0.12260882556438446
    4 0 0.10006923228502274
    4 100 0.12275046110153198
    5 0 0.0993042066693306
    5 100 0.12257824838161469
    6 0 0.0967678651213646
    6 100 0.12443818897008896
    7 0 0.0965462476015091
    7 100 0.12179268896579742
    8 0 0.09197664260864258
    8 100 0.12110235542058945
    9 0 0.0913471132516861
    9 100 0.12342415750026703
    
    
    
  • 相关阅读:
    嵌入式GUI FTK介绍(11)交叉编译
    3G手机 。Android 。Broncho
    PXA300/310的2D图形加速示例代码
    在终端下修改Android手机(Broncho A1)的系统设置
    FTK google group开通,欢迎加入交流。
    使用WebDeployment Project改善VS2005发布网站问题
    IIS 伪静态设置
    使用jQuery简化Ajax开发——Ajax开发入门[令狐葱翻译版part1]
    web.config文件中的特殊字符处理
    网上找的asp.net伪静态教程,大晚上补补课
  • 原文地址:https://www.cnblogs.com/nickchen121/p/11073620.html
Copyright © 2011-2022 走看看