zoukankan      html  css  js  c++  java
  • 小白专场-多项式乘法与加法运算-c语言实现

    一、题意理解

    设计函数分别求两个一元多项式的乘积与和,例:

    [ ext{已知以下两个多项式:} \ egin{align} & 3x^4-5x^2+6x-2 \ & 5x^{20}-7x^4+3x end{align} ]

    [ ext{多项式和为:} \ egin{align} 5x^{20}-4x^4-5x^2+9x-2 end{align} ]

    假设多项式的乘积为((a+b)(c+d)=ac+ad+bc+bd),则多项式的乘积如下:

    [egin{align} 15x^{24}-25x^{22}+30x^{21}-10x^{20}-21x^8+35x^6-33x^5+14x^4-15x^3+18x^2-6x end{align} ]

    通过上述题意理解,我们可以设计函数分别求两个一元多项式的乘积与和。

    输入样例:

    [egin{align} & 3x^4-5x^2+6x-2 quad --> quad ext{4个}\,3\,4\,-5\,2\,6\,1\,-2\,0 \ & 5x^{20}-7x^4+3x quad --> quad ext{3个}\,5\,20\,-7\,4\,3\,1 \ end{align} \ ]

    输出样例:

    [egin{align} & 15x^{24}-25x^{22}+30x^{21}-10x^{20}-21x^8+35x^6-33x^5+14x^4-15x^3+18x^2-6x \ & 15 \, 24 \, -25 \, 22 \, 30 \, 21 \, -10 \, 20 \, -21 \, 8 \, 35 \, 6 \, -33 \, 5 \, 14 \, 4 \, -15 \, 3 \, 18 \, 2 \, -6 \, 1 \, 5 \, 20 \, -4 \, 4 \, -5 \, 2 \, 9 \, 1 \, -2 \, 0 end{align} ]

    二、求解思路

    1. 多项式表示
    2. 程序框架
    3. 读多项式
    4. 加法实现
    5. 乘法实现
    6. 多项式输出

    三、多项式的表示

    仅表示非零项

    3.1 数组

    优点:编程简单、调试简单

    缺点:需要事先确定数组大小

    一种比较好的实现方法是:动态数组(动态更改数组的大小)

    3.2 链表

    优点:动态性强

    缺点:编程略为复杂、调试比较困难

    数据结构设计:

    /* c语言实现 */
    
    typedef struct PolyNode *Polynomial;
    struct PolyNode{
      int coef;
      int expon;
      Polynomial link;
    }
    

    四、程序框架搭建

    /* c语言实现 */
    
    int main()
    {
      读入多项式1;
      读入多项式2;
      乘法运算并输出;
      加法运算并输出;
      return 0;
    }
    
    int main()
    {
      Polynomial P1, P2, PP, PS;
      
      P1 = ReadPoly();
      P2 = ReadPoly();
      PP = Mult(P1, P2);
      PrintPoly(PP);
      PS = Add(P1, P2);
      PrintPoly(PS);
      
      return 0;
    }
    

    需要设计的函数:

    • 读一个多项式
    • 两多项式相乘
    • 两多项式相加
    • 多项式输出

    五、如何读入多项式

    /* c语言实现 */
    
    Polynomial ReadPoly()
    {
      ...;
      scanf("%d", &N);
      ...;
      while (N--) {
        scanf("%d %d", &c, &e);
        Attach(c, e, &Rear);
      }
      ...;
      return P;
    }
    

    Rear初值是多少?

    两种处理方法:

    1. Rear初值为NULL:在Attach函数中根据Rear是否为NULL做不同处理

    1. Rear指向一个空结点

    /* c语言实现 */
    
    void Attach(int c, int e, Polynomial *pRear)
    {
      Polynomial P;
      
      P = (Polynomial)malloc(sizeof(struct PolyNode));
      p->coef = c; /* 对新结点赋值 */
      p->expon = e;
      p->link = NULL;
      (*pRear)->link = P;
      (*pRear) = P; /* 修改pRear值 */
    

    /* c语言实现 */
    
    Polynomial ReadPoly()
    {
      Polynomial P, Rear, t;
      int c, e, N;
      
      scanf("%d", &N);
      P = (Polynomial)malloc(sizeof(struct PolyNode)); // 链表头空结点
      P->link = NULL;
      Rear = P;
      while (N--) {
        scanf("%d %d", &c, &e);
        Attach(c, e, &Rear); // 将当前项插入多项式尾部
      }
      t = P; P = P->link; free(t); // 删除临时生成的头结点
      return P;
    }
    

    六、如何将两个多项式相加

    /* c语言实现 */
    
    Polynomial Add(Polynomial P1, Polynomial P2)
    {
      ...;
      t1 = P1; t2 = P2;
      P = (Polynomial)malloc(sizeof(struct PolyNode));
      P->link = NULL;
      Rear = P;
      while (t1 && t2){
        if (t1->expon == t2->expon){
          ...;
        }
        else if (t1->expon > t2->expon){
          ...;
        }
        else{
          ...;
        }
      }
      while (t1){
        ...;
      }
      while (t2){
        ...;
      }
      ...;
      return P;
    }
    

    七、如何将两个多项式相乘

    方法:

    1. 将乘法运算转换为加法运算

    将P1当前项(ci, ei)乘P2多项式,再加到结果多项式里

    /* c语言实现 */
    
    t1 = P1; t2 = P2;
    P = (Polynomial)malloc(sizeof(struct PolyNode)); P->link = NULL;
    Rear = P;
    while (t2){
      Attach(t1->coef * t2->coef, t1->expon + t2->expon, &Rear);
      t2 = t2->link;
    }
    
    1. 逐项插入

    将P1当前项(c1_i, e1_i)乘P2当前项(c2_i, e2_i),并插入到结果多项式中。关键是要找到插入位置

    初始结果多项式可由P1第一项乘P2获得(如上)

    /* c语言实现 */
    
    Polynomial Mult(Polynomial P1, Polynomial P2)
    {
      ...;
      t1 = P1; t2 = P2;
      ...;
      while (t2){ // 先用P1的第一项乘以P2,得到P
        ...;
      }
      t1 = t1->link;
      while (t1){
        t2 = P2; Rear = P;
        while (t2){
          e = t1->expon + t2->expon;
          c = t1->coef * t2->coef;
          ...;
          t2 = t2->link;
        }
        t1 = t1->link;
      }
      ...;
    }
    
    /* c语言实现 */
    
    Polynomial Mult(Polynomial P1, Polynomial P2)
    {
      Polynomial P, Rear, t1, t2, t;
      int c, e;
      
      if (!P1 || !P2) return NULL;
      
      t1 = P1; t2 = P2;
      P = (Polynomial)malloc(sizeof(struct PolyNOde)); P->link = NULL;
      Rear = P;
      while (t2){ // 先用P1的第一项乘以P2,得到P
        Attach(t1->coef * t2->coef, t1->expon + t2->expon, &Rear);
        t2 = t2->link;
      }
    
      t1 = t1->link;
      while (t1){
        t2 = P2; Rear = P;
        while (t2){
          e = t1->expon + t2->expon;
          c = t1->coef * t2->coef;
          ...;
          t2 = t2->link;
        }
        t1 = t1->link;
      }
      ...;
    }
    

    /* c语言实现 */
    
    Polynomial Mult(Polynomial P1, Polynomial P2)
    {
      Polynomial P, Rear, t1, t2, t;
      int c, e;
      
      if (!P1 || !P2) return NULL;
      
      t1 = P1; t2 = P2;
      P = (Polynomial)malloc(sizeof(struct PolyNOde)); P->link = NULL;
      Rear = P;
      while (t2){ // 先用P1的第一项乘以P2,得到P
        Attach(t1->coef * t2->coef, t1->expon + t2->expon, &Rear);
        t2 = t2->link;
      }
    
      t1 = t1->link;
      while (t1) {
        t2 = P2; Rear = P;
        while (t2) {
          e = t1->expon + t2->expon;
          c = t2->coef * t2->coef;
          while (Rear->link && Rear->link->expon > e)
            Rear = Rear->link;
          if (Rear->link && Rear->link->expon == e){
            ...;
          }
          else{
            ...;
          }
          t2 = t2->link;
        }
        t1 = t1->link;
      }
      ...;
    }
    

    /* c语言实现 */
    
    Polynomial Mult(Polynomial P1, Polynomial P2)
    {
      Polynomial P, Rear, t1, t2, t;
      int c, e;
      
      if (!P1 || !P2) return NULL;
      
      t1 = P1; t2 = P2;
      P = (Polynomial)malloc(sizeof(struct PolyNOde)); P->link = NULL;
      Rear = P;
      while (t2){ // 先用P1的第一项乘以P2,得到P
        Attach(t1->coef * t2->coef, t1->expon + t2->expon, &Rear);
        t2 = t2->link;
      }
    
      t1 = t1->link;
      while (t1) {
        t2 = P2; Rear = P;
        while (t2) {
          e = t1->expon + t2->expon;
          c = t2->coef * t2->coef;
          while (Rear->link && Rear->link->expon > e)
            Rear = Rear->link;
          if (Rear->link && Rear->link->expon == e){
            if (Rear->link->coef + c)
              Rear->link->coef += c;
            else{
              t = Rear->link;
              Rear->link = t->link;
              free(t);
            }
          }
          else{
            t = (Polynomial)malloc(sizeof(struct PolyNode));
            t->coef = c; t->expon = e;
            t->link = Rear->link;
            Rear->link = t; Rear = Rear->link;
          }
          t2 = t2->link;
        }
        t1 = t1->link;
      }
      ...;
    }
    

    /* c语言实现 */
    
    Polynomial Mult(Polynomial P1, Polynomial P2)
    {
      Polynomial P, Rear, t1, t2, t;
      int c, e;
      
      if (!P1 || !P2) return NULL;
      
      t1 = P1; t2 = P2;
      P = (Polynomial)malloc(sizeof(struct PolyNOde)); P->link = NULL;
      Rear = P;
      while (t2){ // 先用P1的第一项乘以P2,得到P
        Attach(t1->coef * t2->coef, t1->expon + t2->expon, &Rear);
        t2 = t2->link;
      }
    
      t1 = t1->link;
      while (t1) {
        t2 = P2; Rear = P;
        while (t2) {
          e = t1->expon + t2->expon;
          c = t2->coef * t2->coef;
          while (Rear->link && Rear->link->expon > e)
            Rear = Rear->link;
          if (Rear->link && Rear->link->expon == e){
            if (Rear->link->coef + c)
              Rear->link->coef += c;
            else{
              t = Rear->link;
              Rear->link = t->link;
              free(t);
            }
          }
          else{
            t = (Polynomial)malloc(sizeof(struct PolyNode));
            t->coef = c; t->expon = e;
            t->link = Rear->link;
            Rear->link = t; Rear = Rear->link;
          }
          t2 = t2->link;
        }
        t1 = t1->link;
      }
      t2 = P; P = P->link; free(t2);
      return P;
    }
    

    八、如何将多项式输出

    /* c语言实现 */
    
    void PrintPoly(Polynomial P)
    {
      // 输出多项式
      int flag = 0;  // 辅助调整输出格式用,判断输出加法还是乘法
      
      if (!P) {printf("0 0
    "); return ;}
      
      while (P) {
        if (!flag)
          flag = 1;
        else
          printf(" ");
        printf("%d %d", P->coef, P->expon);
        P = P->link;
      }
      printf("
    ");
    }
    
  • 相关阅读:
    MySQL数据库的登陆
    Mysql 数据库的介绍
    前台后台数据的传递
    header函数
    循环结构
    流程控制
    JS与PHP数组操作的不同
    HDU 3265/POJ 3832 Posters(扫描线+线段树)(2009 Asia Ningbo Regional)
    HDU 3264/POJ 3831 Open-air shopping malls(计算几何+二分)(2009 Asia Ningbo Regional)
    HDU 3262/POJ 3829 Seat taking up is tough(模拟+搜索)(2009 Asia Ningbo Regional)
  • 原文地址:https://www.cnblogs.com/nickchen121/p/11457287.html
Copyright © 2011-2022 走看看