zoukankan      html  css  js  c++  java
  • 09-01 Tensorflow1基本使用


    更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html

    Tensorflow基本使用

    一、确认安装Tensorflow

    import tensorflow as tf
    
    a = tf.constant(10)
    b = tf.constant(32)
    sess = tf.Session()
    print(sess.run(a+b))
    
    42
    

    二、获取MNIST数据集

    # 获取MNIST数据集
    # 获取地址:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/examples/tutorials/mnist/input_data.py
    # Copyright 2015 Google Inc. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ==============================================================================
    """Functions for downloading and reading MNIST data."""
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    import gzip
    import os
    import tensorflow.python.platform
    import numpy
    from six.moves import urllib
    from six.moves import xrange  # pylint: disable=redefined-builtin
    import tensorflow as tf
    SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
    
    
    def maybe_download(filename, work_directory):
        """Download the data from Yann's website, unless it's already here."""
        if not os.path.exists(work_directory):
            os.mkdir(work_directory)
        filepath = os.path.join(work_directory, filename)
        if not os.path.exists(filepath):
            filepath, _ = urllib.request.urlretrieve(
                SOURCE_URL + filename, filepath)
            statinfo = os.stat(filepath)
            print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
        return filepath
    
    
    def _read32(bytestream):
        dt = numpy.dtype(numpy.uint32).newbyteorder('>')
        return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
    
    
    def extract_images(filename):
        """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
        print('Extracting', filename)
        with gzip.open(filename) as bytestream:
            magic = _read32(bytestream)
            if magic != 2051:
                raise ValueError(
                    'Invalid magic number %d in MNIST image file: %s' %
                    (magic, filename))
            num_images = _read32(bytestream)
            rows = _read32(bytestream)
            cols = _read32(bytestream)
            buf = bytestream.read(rows * cols * num_images)
            data = numpy.frombuffer(buf, dtype=numpy.uint8)
            data = data.reshape(num_images, rows, cols, 1)
            return data
    
    
    def dense_to_one_hot(labels_dense, num_classes=10):
        """Convert class labels from scalars to one-hot vectors."""
        num_labels = labels_dense.shape[0]
        index_offset = numpy.arange(num_labels) * num_classes
        labels_one_hot = numpy.zeros((num_labels, num_classes))
        labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
        return labels_one_hot
    
    
    def extract_labels(filename, one_hot=False):
        """Extract the labels into a 1D uint8 numpy array [index]."""
        print('Extracting', filename)
        with gzip.open(filename) as bytestream:
            magic = _read32(bytestream)
            if magic != 2049:
                raise ValueError(
                    'Invalid magic number %d in MNIST label file: %s' %
                    (magic, filename))
            num_items = _read32(bytestream)
            buf = bytestream.read(num_items)
            labels = numpy.frombuffer(buf, dtype=numpy.uint8)
            if one_hot:
                return dense_to_one_hot(labels)
            return labels
    
    
    class DataSet(object):
        def __init__(self, images, labels, fake_data=False, one_hot=False,
                     dtype=tf.float32):
            """Construct a DataSet.
            one_hot arg is used only if fake_data is true.  `dtype` can be either
            `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
            `[0, 1]`.
            """
            dtype = tf.as_dtype(dtype).base_dtype
            if dtype not in (tf.uint8, tf.float32):
                raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                                dtype)
            if fake_data:
                self._num_examples = 10000
                self.one_hot = one_hot
            else:
                assert images.shape[0] == labels.shape[0], (
                    'images.shape: %s labels.shape: %s' % (images.shape,
                                                           labels.shape))
                self._num_examples = images.shape[0]
                # Convert shape from [num examples, rows, columns, depth]
                # to [num examples, rows*columns] (assuming depth == 1)
                assert images.shape[3] == 1
                images = images.reshape(images.shape[0],
                                        images.shape[1] * images.shape[2])
                if dtype == tf.float32:
                    # Convert from [0, 255] -> [0.0, 1.0].
                    images = images.astype(numpy.float32)
                    images = numpy.multiply(images, 1.0 / 255.0)
            self._images = images
            self._labels = labels
            self._epochs_completed = 0
            self._index_in_epoch = 0
    
        @property
        def images(self):
            return self._images
    
        @property
        def labels(self):
            return self._labels
    
        @property
        def num_examples(self):
            return self._num_examples
    
        @property
        def epochs_completed(self):
            return self._epochs_completed
    
        def next_batch(self, batch_size, fake_data=False):
            """Return the next `batch_size` examples from this data set."""
            if fake_data:
                fake_image = [1] * 784
                if self.one_hot:
                    fake_label = [1] + [0] * 9
                else:
                    fake_label = 0
                return [fake_image for _ in xrange(batch_size)], [
                    fake_label for _ in xrange(batch_size)]
            start = self._index_in_epoch
            self._index_in_epoch += batch_size
            if self._index_in_epoch > self._num_examples:
                # Finished epoch
                self._epochs_completed += 1
                # Shuffle the data
                perm = numpy.arange(self._num_examples)
                numpy.random.shuffle(perm)
                self._images = self._images[perm]
                self._labels = self._labels[perm]
                # Start next epoch
                start = 0
                self._index_in_epoch = batch_size
                assert batch_size <= self._num_examples
            end = self._index_in_epoch
            return self._images[start:end], self._labels[start:end]
    
    
    def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
        class DataSets(object):
            pass
        data_sets = DataSets()
        if fake_data:
            def fake():
                return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
            data_sets.train = fake()
            data_sets.validation = fake()
            data_sets.test = fake()
            return data_sets
        TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
        TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
        TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
        TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
        VALIDATION_SIZE = 5000
        local_file = maybe_download(TRAIN_IMAGES, train_dir)
        train_images = extract_images(local_file)
        local_file = maybe_download(TRAIN_LABELS, train_dir)
        train_labels = extract_labels(local_file, one_hot=one_hot)
        local_file = maybe_download(TEST_IMAGES, train_dir)
        test_images = extract_images(local_file)
        local_file = maybe_download(TEST_LABELS, train_dir)
        test_labels = extract_labels(local_file, one_hot=one_hot)
        validation_images = train_images[:VALIDATION_SIZE]
        validation_labels = train_labels[:VALIDATION_SIZE]
        train_images = train_images[VALIDATION_SIZE:]
        train_labels = train_labels[VALIDATION_SIZE:]
        data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
        data_sets.validation = DataSet(validation_images, validation_labels,
                                       dtype=dtype)
        data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
        return data_sets
    

    三、使用Tensorflow训练——Softmax回归

    # 使用Tensorflow 训练——Softmax回归
    import time
    import tensorflow as tf
    
    # 读取 MNIST 数据集,分成训练数据和测试数据
    mnist = read_data_sets('MNIST_data/', one_hot=True)
    
    # 设置训练数据 x,连接权重 W 和偏置 b
    x = tf.placeholder('float', [None, 784])
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    
    # 对 x 和 W 进行内积运算后把结果传递给 softmax 函数,计算输出 y
    y = tf.nn.softmax(tf.matmul(x, W)+b)
    
    # 设置期望输出 y_
    y_ = tf.placeholder('float', [None, 10])
    
    # 计算交叉熵代价函数
    cross_entropy = -tf.reduce_sum(y_*tf.log(y))
    
    # 使用梯度下降法最小化交叉熵代价函数
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
    
    # 初始化所有参数
    init = tf.global_variables_initializer()
    sess = tf.Session()
    sess.run(init)
    
    st = time.time()
    
    # 迭代训练
    for i in range(1000):
        # 选择训练数据(mini-batch)
        batch_xs, batch_ys = mnist.train.next_batch(100)
        # 训练处理
        sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
    
    # 进行测试,确认实际输出和期望输出是否一致
    correct_prediction = tf.equal(tf.argmax(y, -1), tf.argmax(y_, 1))
    softmax_time = time.time()-st
    
    # 计算准确率
    accuary = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
    print('准确率:%s' % sess.run(accuary, feed_dict={
          x: mnist.test.images, y_: mnist.test.labels}))
    softmax_acc = sess.run(accuary, feed_dict={
                           x: mnist.test.images, y_: mnist.test.labels})
    
    Extracting MINIST_data/train-images-idx3-ubyte.gz
    Extracting MINIST_data/train-labels-idx1-ubyte.gz
    Extracting MINIST_data/t10k-images-idx3-ubyte.gz
    Extracting MINIST_data/t10k-labels-idx1-ubyte.gz
    准确率:0.9191
    

    四、使用Tensorflow训练——卷积神经网络

    4.1 构建网络组件

    # 构建网络组件
    import time
    import tensorflow as tf
    
    
    def weight_variable(shape):
        """
        初始化连接权重
        """
        # truncated_normal()根据指定的标准差创建随机数
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    
    def bias_variable(shape):
        """
        初始化偏置
        """
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    
    def conv2d(x, W):
        """
        构建卷积层
        x: 输入数据,四维参数——批大小、高度、宽度和通道数
        W: 卷积核参数,四维参数——卷积核高度、卷积核宽度、输入通道数和输出通道数
        """
        # strides设置卷积核移动的步长,strides=[1,2,2,1]步长为2
        # padding设置是否补零填充,padding='SAME'为填充;padding='VALID'为不填充
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    
    def max_pool_2x2(x):
        """
        构建池化层
        x: 输入数据,四维参数——批大小、高度、宽度和通道数
        """
        # ksize设置池化窗口的大小,四维参数——批大小、高度、宽度和通道数
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    
    # 读取MNIST数据集
    mnist = read_data_sets('MNIST_data', one_hot=True)
    # 输入数据,二维数据shape=[批大小, 数据维度]
    x = tf.placeholder('float', shape=[None, 784])
    # 期望输出
    y_ = tf.placeholder('float', shape=[None, 10])
    
    # 修改数据集格式(批大小*28*28*通道数),即把二维数据修改成四维张量[-1,28,28,1]
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    

    4.2 定义网络结构

    # 定义网络结构
    # 第1个卷积层,weight_variable([卷积核高度,卷积核宽度,通道数,卷积核个数])
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    
    # 激活函数及池化
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1)
    h_pool = max_pool_2x2(h_conv1)
    
    # 第2个卷积层
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    
    # 激活函数及池化
    h_conv2 = tf.nn.relu(conv2d(h_pool, W_conv2)+b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    # 设置全连接层的参数
    W_fc1 = weight_variable([7*7*64, 1024])
    b_fc1 = bias_variable([1024])
    
    # 全连接层
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1)
    
    # Dropout
    keep_prob = tf.placeholder('float')
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    # 设置全连接层的参数
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    
    # softmax 函数
    y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)
    
    # 误差函数,交叉熵代价函数
    cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
    

    4.3 训练模型

    # 训练模型
    # 训练方法
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
    # 测试方法
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
    
    # 创建训练用的会话
    sess = tf.Session()
    
    # 初始化参数
    sess.run(tf.global_variables_initializer())
    
    st = time.time()
    
    # 迭代处理
    for i in range(1000):
        # 选择训练数据(mini-batch)
        batch = mnist.train.next_batch(50)
        # 训练处理
        _, loss_value = sess.run([train_step, cross_entropy], feed_dict={
                                 x: batch[0], y_: batch[1], keep_prob: 0.5})
    
        # 测试
        if i % 100 == 0:
            acc = sess.run(accuracy, feed_dict={
                x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
            print(f'卷积神经网络迭代 {i} 次的准确率:{acc}')
    
    print(f'Softmax回归训练时间:{softmax_time}')
    print(f'卷积神经网络训练时间:{time.time()-st}')
    
    # 测试
    acc = sess.run(accuracy, feed_dict={
                   x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
    
    print(f'Softmax回归准确率:{softmax_acc}')
    print(f'卷积神经网络准确率:{acc}')
    
    卷积神经网络迭代 0 次的准确率:0.08910000324249268
    卷积神经网络迭代 100 次的准确率:0.8474000096321106
    卷积神经网络迭代 200 次的准确率:0.9085000157356262
    卷积神经网络迭代 300 次的准确率:0.9266999959945679
    卷积神经网络迭代 400 次的准确率:0.9399999976158142
    卷积神经网络迭代 500 次的准确率:0.9430999755859375
    卷积神经网络迭代 600 次的准确率:0.953499972820282
    卷积神经网络迭代 700 次的准确率:0.9571999907493591
    卷积神经网络迭代 800 次的准确率:0.9599999785423279
    卷积神经网络迭代 900 次的准确率:0.9613000154495239
    Softmax回归训练时间:2.030284881591797
    卷积神经网络训练时间:394.48987913131714
    Softmax回归准确率:0.9190999865531921
    卷积神经网络准确率:0.9670000076293945
    

    五、使用Tensorflow进行可视化

    # 使用Tensorflow进行可视化
    # Copyright 2015 Google Inc. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ==============================================================================
    """Functions for downloading and reading MNIST data."""
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    import gzip
    import os
    import time
    import tensorflow.python.platform
    import numpy
    from six.moves import urllib
    from six.moves import xrange  # pylint: disable=redefined-builtin
    import tensorflow as tf
    SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
    
    
    def maybe_download(filename, work_directory):
        """Download the data from Yann's website, unless it's already here."""
        if not os.path.exists(work_directory):
            os.mkdir(work_directory)
        filepath = os.path.join(work_directory, filename)
        if not os.path.exists(filepath):
            filepath, _ = urllib.request.urlretrieve(
                SOURCE_URL + filename, filepath)
            statinfo = os.stat(filepath)
            print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
        return filepath
    
    
    def _read32(bytestream):
        dt = numpy.dtype(numpy.uint32).newbyteorder('>')
        return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
    
    
    def extract_images(filename):
        """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
        print('Extracting', filename)
        with gzip.open(filename) as bytestream:
            magic = _read32(bytestream)
            if magic != 2051:
                raise ValueError(
                    'Invalid magic number %d in MNIST image file: %s' %
                    (magic, filename))
            num_images = _read32(bytestream)
            rows = _read32(bytestream)
            cols = _read32(bytestream)
            buf = bytestream.read(rows * cols * num_images)
            data = numpy.frombuffer(buf, dtype=numpy.uint8)
            data = data.reshape(num_images, rows, cols, 1)
            return data
    
    
    def dense_to_one_hot(labels_dense, num_classes=10):
        """Convert class labels from scalars to one-hot vectors."""
        num_labels = labels_dense.shape[0]
        index_offset = numpy.arange(num_labels) * num_classes
        labels_one_hot = numpy.zeros((num_labels, num_classes))
        labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
        return labels_one_hot
    
    
    def extract_labels(filename, one_hot=False):
        """Extract the labels into a 1D uint8 numpy array [index]."""
        print('Extracting', filename)
        with gzip.open(filename) as bytestream:
            magic = _read32(bytestream)
            if magic != 2049:
                raise ValueError(
                    'Invalid magic number %d in MNIST label file: %s' %
                    (magic, filename))
            num_items = _read32(bytestream)
            buf = bytestream.read(num_items)
            labels = numpy.frombuffer(buf, dtype=numpy.uint8)
            if one_hot:
                return dense_to_one_hot(labels)
            return labels
    
    
    class DataSet(object):
        def __init__(self, images, labels, fake_data=False, one_hot=False,
                     dtype=tf.float32):
            """Construct a DataSet.
            one_hot arg is used only if fake_data is true.  `dtype` can be either
            `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
            `[0, 1]`.
            """
            dtype = tf.as_dtype(dtype).base_dtype
            if dtype not in (tf.uint8, tf.float32):
                raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                                dtype)
            if fake_data:
                self._num_examples = 10000
                self.one_hot = one_hot
            else:
                assert images.shape[0] == labels.shape[0], (
                    'images.shape: %s labels.shape: %s' % (images.shape,
                                                           labels.shape))
                self._num_examples = images.shape[0]
                # Convert shape from [num examples, rows, columns, depth]
                # to [num examples, rows*columns] (assuming depth == 1)
                assert images.shape[3] == 1
                images = images.reshape(images.shape[0],
                                        images.shape[1] * images.shape[2])
                if dtype == tf.float32:
                    # Convert from [0, 255] -> [0.0, 1.0].
                    images = images.astype(numpy.float32)
                    images = numpy.multiply(images, 1.0 / 255.0)
            self._images = images
            self._labels = labels
            self._epochs_completed = 0
            self._index_in_epoch = 0
    
        @property
        def images(self):
            return self._images
    
        @property
        def labels(self):
            return self._labels
    
        @property
        def num_examples(self):
            return self._num_examples
    
        @property
        def epochs_completed(self):
            return self._epochs_completed
    
        def next_batch(self, batch_size, fake_data=False):
            """Return the next `batch_size` examples from this data set."""
            if fake_data:
                fake_image = [1] * 784
                if self.one_hot:
                    fake_label = [1] + [0] * 9
                else:
                    fake_label = 0
                return [fake_image for _ in xrange(batch_size)], [
                    fake_label for _ in xrange(batch_size)]
            start = self._index_in_epoch
            self._index_in_epoch += batch_size
            if self._index_in_epoch > self._num_examples:
                # Finished epoch
                self._epochs_completed += 1
                # Shuffle the data
                perm = numpy.arange(self._num_examples)
                numpy.random.shuffle(perm)
                self._images = self._images[perm]
                self._labels = self._labels[perm]
                # Start next epoch
                start = 0
                self._index_in_epoch = batch_size
                assert batch_size <= self._num_examples
            end = self._index_in_epoch
            return self._images[start:end], self._labels[start:end]
    
    
    def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
        class DataSets(object):
            pass
        data_sets = DataSets()
        if fake_data:
            def fake():
                return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
            data_sets.train = fake()
            data_sets.validation = fake()
            data_sets.test = fake()
            return data_sets
        TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
        TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
        TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
        TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
        VALIDATION_SIZE = 5000
        local_file = maybe_download(TRAIN_IMAGES, train_dir)
        train_images = extract_images(local_file)
        local_file = maybe_download(TRAIN_LABELS, train_dir)
        train_labels = extract_labels(local_file, one_hot=one_hot)
        local_file = maybe_download(TEST_IMAGES, train_dir)
        test_images = extract_images(local_file)
        local_file = maybe_download(TEST_LABELS, train_dir)
        test_labels = extract_labels(local_file, one_hot=one_hot)
        validation_images = train_images[:VALIDATION_SIZE]
        validation_labels = train_labels[:VALIDATION_SIZE]
        train_images = train_images[VALIDATION_SIZE:]
        train_labels = train_labels[VALIDATION_SIZE:]
        data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
        data_sets.validation = DataSet(validation_images, validation_labels,
                                       dtype=dtype)
        data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
        return data_sets
    
    
    def weight_variable(shape):
        """
        初始化连接权重
        """
        # truncated_normal()根据指定的标准差创建随机数
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    
    def bias_variable(shape):
        """
        初始化偏置
        """
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    
    def conv2d(x, W):
        """
        构建卷积层
        x: 输入数据,四维参数——批大小、高度、宽度和通道数
        W: 卷积核参数,四维参数——卷积核高度、卷积核宽度、输入通道数和输出通道数
        """
        # strides设置卷积核移动的步长,strides=[1,2,2,1]步长为2
        # padding设置是否补零填充,padding='SAME'为填充;padding='VALID'为不填充
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    
    def max_pool_2x2(x):
        """
        构建池化层
        x: 输入数据,四维参数——批大小、高度、宽度和通道数
        """
        # ksize设置池化窗口的大小,四维参数——批大小、高度、宽度和通道数
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    
    # 读取MNIST数据集
    mnist = read_data_sets('MNIST_data', one_hot=True)
    
    # # 输入数据,二维数据shape=[批大小, 数据维度]
    # x = tf.placeholder('float', shape=[None, 784])
    # # 期望输出
    # y_ = tf.placeholder('float', shape=[None, 10])
    
    # 通过as_default()生成一个计算图
    with tf.Graph().as_default():
        # 设置数据集和期望输出
        x = tf.placeholder('float', shape=[None, 784], name='Input')
        y_ = tf.placeholder('float', shape=[None, 10], name='GroundTruth')
        # 修改数据集格式(批大小*28*28*通道数),即把二维数据修改成四维张量[-1,28,28,1]
        x_image = tf.reshape(x, [-1, 28, 28, 1])
    
        # 第1个卷积层,weight_variable([卷积核高度,卷积核宽度,通道数,卷积核个数])
        W_conv1 = weight_variable([5, 5, 1, 32])
        b_conv1 = bias_variable([32])
    
        # 激活函数及池化
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1)
        h_pool = max_pool_2x2(h_conv1)
    
        # 第2个卷积层
        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])
    
        # 激活函数及池化
        h_conv2 = tf.nn.relu(conv2d(h_pool, W_conv2)+b_conv2)
        h_pool2 = max_pool_2x2(h_conv2)
    
        # 设置全连接层的参数
        W_fc1 = weight_variable([7*7*64, 1024])
        b_fc1 = bias_variable([1024])
    
        # 全连接层
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1)
    
        # Dropout
        keep_prob = tf.placeholder('float')
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
        # 设置全连接层的参数
        W_fc2 = weight_variable([1024, 10])
        b_fc2 = bias_variable([10])
    
        # softmax 函数
        # y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)
        with tf.name_scope('Output') as scope:
            y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)
    
        # 误差函数,交叉熵代价函数
        # cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
        with tf.name_scope('xentropy') as scope:
            cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
            # tf.summary.scalar()输出训练情况
            ce_summ = tf.summary.scalar('cross_entropy', cross_entropy)
    
        # 训练方法
        # train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
        with tf.name_scope('train') as scope:
            train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
        # 测试方法
        # correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
        # accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
        with tf.name_scope('test') as scope:
            correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
            accuracy_summary = tf.summary.scalar('accuracy', accuracy)
    
    
        # 创建训练用的会话
        sess = tf.Session()
    
        # 初始化参数
        sess.run(tf.global_variables_initializer())
    
        # 训练情况的输出设置(新增)
        # 把设置的所有输出操作合并为一个操作
        summary_op = tf.summary.merge_all()
        # tf.summary.FileWriter()保存训练数据,graph_def为图(网络结构)
        summary_writer = tf.summary.FileWriter('MNIST_data', graph_def=sess.graph_def)
    
        st = time.time()
    
        # 迭代处理
        for i in range(1000):
            # 选择训练数据(mini-batch)
            batch = mnist.train.next_batch(50)
            # 训练处理
            _, loss_value = sess.run([train_step, cross_entropy], feed_dict={
                                     x: batch[0], y_: batch[1], keep_prob: 0.5})
    
            # 测试
            if i % 100 == 0:
                #         acc = sess.run(accuracy, feed_dict={
                #             x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
                # summary_op输出训练数据,accuracy进行测试
                result = sess.run([summary_op, accuracy], feed_dict={
                    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
                # 传递summary_op
                summary_str = result[0]
                # 传递acc
                acc = result[1]
                # add_summary()输出summary_str的内容
                summary_writer.add_summary(summary_str, i)
                print(f'卷积神经网络迭代 {i} 次的准确率:{acc}')
    
        print(f'卷积神经网络训练时间:{time.time()-st}')
    
        # 测试
        acc = sess.run(accuracy, feed_dict={
                       x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
    
        print(f'卷积神经网络准确率:{acc}')
    
    Extracting MNIST_data/train-images-idx3-ubyte.gz
    Extracting MNIST_data/train-labels-idx1-ubyte.gz
    Extracting MNIST_data/t10k-images-idx3-ubyte.gz
    Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
    WARNING:tensorflow:Passing a `GraphDef` to the SummaryWriter is deprecated. Pass a `Graph` object instead, such as `sess.graph`.
    卷积神经网络迭代 0 次的准确率:0.11810000240802765
    卷积神经网络迭代 100 次的准确率:0.8456000089645386
    卷积神经网络迭代 200 次的准确率:0.9088000059127808
    卷积神经网络迭代 300 次的准确率:0.9273999929428101
    卷积神经网络迭代 400 次的准确率:0.935699999332428
    卷积神经网络迭代 500 次的准确率:0.9404000043869019
    卷积神经网络迭代 600 次的准确率:0.9490000009536743
    卷积神经网络迭代 700 次的准确率:0.951200008392334
    卷积神经网络迭代 800 次的准确率:0.95660001039505
    卷积神经网络迭代 900 次的准确率:0.9592999815940857
    卷积神经网络训练时间:374.29131293296814
    卷积神经网络准确率:0.963699996471405
    

    终端运行:tensorboard --logdir ~/Desktop/jupyter/deepLearning/图解深度学习-tensorflow/MNIST_data Starting Tensor- Board on port 6006

    • 其中--logdir指定的是完整路径目录
  • 相关阅读:
    删除购物车列表页面商品
    购物车页面修改数量功能实现
    cookie来实现购物车功能
    wxWidgets学习计划
    正则校验表达式
    Vue组件间的参数传递与Vue的路由实现
    Vue实现数据双向绑定的原理
    Vue的生命周期
    对于mvvm的理解
    vue+axios 前端实现登录拦截的两种方式(路由拦截、http拦截)
  • 原文地址:https://www.cnblogs.com/nickchen121/p/11686714.html
Copyright © 2011-2022 走看看