目录
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html
Tensorflow基本使用
一、确认安装Tensorflow
import tensorflow as tf
a = tf.constant(10)
b = tf.constant(32)
sess = tf.Session()
print(sess.run(a+b))
42
二、获取MNIST数据集
# 获取MNIST数据集
# 获取地址:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/examples/tutorials/mnist/input_data.py
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(
SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False, one_hot=False,
dtype=tf.float32):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == tf.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
data_sets.train = fake()
data_sets.validation = fake()
data_sets.test = fake()
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
data_sets.validation = DataSet(validation_images, validation_labels,
dtype=dtype)
data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
return data_sets
三、使用Tensorflow训练——Softmax回归
# 使用Tensorflow 训练——Softmax回归
import time
import tensorflow as tf
# 读取 MNIST 数据集,分成训练数据和测试数据
mnist = read_data_sets('MNIST_data/', one_hot=True)
# 设置训练数据 x,连接权重 W 和偏置 b
x = tf.placeholder('float', [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
# 对 x 和 W 进行内积运算后把结果传递给 softmax 函数,计算输出 y
y = tf.nn.softmax(tf.matmul(x, W)+b)
# 设置期望输出 y_
y_ = tf.placeholder('float', [None, 10])
# 计算交叉熵代价函数
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
# 使用梯度下降法最小化交叉熵代价函数
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
# 初始化所有参数
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
st = time.time()
# 迭代训练
for i in range(1000):
# 选择训练数据(mini-batch)
batch_xs, batch_ys = mnist.train.next_batch(100)
# 训练处理
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# 进行测试,确认实际输出和期望输出是否一致
correct_prediction = tf.equal(tf.argmax(y, -1), tf.argmax(y_, 1))
softmax_time = time.time()-st
# 计算准确率
accuary = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
print('准确率:%s' % sess.run(accuary, feed_dict={
x: mnist.test.images, y_: mnist.test.labels}))
softmax_acc = sess.run(accuary, feed_dict={
x: mnist.test.images, y_: mnist.test.labels})
Extracting MINIST_data/train-images-idx3-ubyte.gz
Extracting MINIST_data/train-labels-idx1-ubyte.gz
Extracting MINIST_data/t10k-images-idx3-ubyte.gz
Extracting MINIST_data/t10k-labels-idx1-ubyte.gz
准确率:0.9191
四、使用Tensorflow训练——卷积神经网络
4.1 构建网络组件
# 构建网络组件
import time
import tensorflow as tf
def weight_variable(shape):
"""
初始化连接权重
"""
# truncated_normal()根据指定的标准差创建随机数
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
"""
初始化偏置
"""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
"""
构建卷积层
x: 输入数据,四维参数——批大小、高度、宽度和通道数
W: 卷积核参数,四维参数——卷积核高度、卷积核宽度、输入通道数和输出通道数
"""
# strides设置卷积核移动的步长,strides=[1,2,2,1]步长为2
# padding设置是否补零填充,padding='SAME'为填充;padding='VALID'为不填充
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
"""
构建池化层
x: 输入数据,四维参数——批大小、高度、宽度和通道数
"""
# ksize设置池化窗口的大小,四维参数——批大小、高度、宽度和通道数
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 读取MNIST数据集
mnist = read_data_sets('MNIST_data', one_hot=True)
# 输入数据,二维数据shape=[批大小, 数据维度]
x = tf.placeholder('float', shape=[None, 784])
# 期望输出
y_ = tf.placeholder('float', shape=[None, 10])
# 修改数据集格式(批大小*28*28*通道数),即把二维数据修改成四维张量[-1,28,28,1]
x_image = tf.reshape(x, [-1, 28, 28, 1])
4.2 定义网络结构
# 定义网络结构
# 第1个卷积层,weight_variable([卷积核高度,卷积核宽度,通道数,卷积核个数])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
# 激活函数及池化
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1)
h_pool = max_pool_2x2(h_conv1)
# 第2个卷积层
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
# 激活函数及池化
h_conv2 = tf.nn.relu(conv2d(h_pool, W_conv2)+b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# 设置全连接层的参数
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# 全连接层
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1)
# Dropout
keep_prob = tf.placeholder('float')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# 设置全连接层的参数
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
# softmax 函数
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)
# 误差函数,交叉熵代价函数
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
4.3 训练模型
# 训练模型
# 训练方法
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 测试方法
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
# 创建训练用的会话
sess = tf.Session()
# 初始化参数
sess.run(tf.global_variables_initializer())
st = time.time()
# 迭代处理
for i in range(1000):
# 选择训练数据(mini-batch)
batch = mnist.train.next_batch(50)
# 训练处理
_, loss_value = sess.run([train_step, cross_entropy], feed_dict={
x: batch[0], y_: batch[1], keep_prob: 0.5})
# 测试
if i % 100 == 0:
acc = sess.run(accuracy, feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
print(f'卷积神经网络迭代 {i} 次的准确率:{acc}')
print(f'Softmax回归训练时间:{softmax_time}')
print(f'卷积神经网络训练时间:{time.time()-st}')
# 测试
acc = sess.run(accuracy, feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
print(f'Softmax回归准确率:{softmax_acc}')
print(f'卷积神经网络准确率:{acc}')
卷积神经网络迭代 0 次的准确率:0.08910000324249268
卷积神经网络迭代 100 次的准确率:0.8474000096321106
卷积神经网络迭代 200 次的准确率:0.9085000157356262
卷积神经网络迭代 300 次的准确率:0.9266999959945679
卷积神经网络迭代 400 次的准确率:0.9399999976158142
卷积神经网络迭代 500 次的准确率:0.9430999755859375
卷积神经网络迭代 600 次的准确率:0.953499972820282
卷积神经网络迭代 700 次的准确率:0.9571999907493591
卷积神经网络迭代 800 次的准确率:0.9599999785423279
卷积神经网络迭代 900 次的准确率:0.9613000154495239
Softmax回归训练时间:2.030284881591797
卷积神经网络训练时间:394.48987913131714
Softmax回归准确率:0.9190999865531921
卷积神经网络准确率:0.9670000076293945
五、使用Tensorflow进行可视化
# 使用Tensorflow进行可视化
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import time
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(
SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False, one_hot=False,
dtype=tf.float32):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == tf.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
data_sets.train = fake()
data_sets.validation = fake()
data_sets.test = fake()
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
data_sets.validation = DataSet(validation_images, validation_labels,
dtype=dtype)
data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
return data_sets
def weight_variable(shape):
"""
初始化连接权重
"""
# truncated_normal()根据指定的标准差创建随机数
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
"""
初始化偏置
"""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
"""
构建卷积层
x: 输入数据,四维参数——批大小、高度、宽度和通道数
W: 卷积核参数,四维参数——卷积核高度、卷积核宽度、输入通道数和输出通道数
"""
# strides设置卷积核移动的步长,strides=[1,2,2,1]步长为2
# padding设置是否补零填充,padding='SAME'为填充;padding='VALID'为不填充
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
"""
构建池化层
x: 输入数据,四维参数——批大小、高度、宽度和通道数
"""
# ksize设置池化窗口的大小,四维参数——批大小、高度、宽度和通道数
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 读取MNIST数据集
mnist = read_data_sets('MNIST_data', one_hot=True)
# # 输入数据,二维数据shape=[批大小, 数据维度]
# x = tf.placeholder('float', shape=[None, 784])
# # 期望输出
# y_ = tf.placeholder('float', shape=[None, 10])
# 通过as_default()生成一个计算图
with tf.Graph().as_default():
# 设置数据集和期望输出
x = tf.placeholder('float', shape=[None, 784], name='Input')
y_ = tf.placeholder('float', shape=[None, 10], name='GroundTruth')
# 修改数据集格式(批大小*28*28*通道数),即把二维数据修改成四维张量[-1,28,28,1]
x_image = tf.reshape(x, [-1, 28, 28, 1])
# 第1个卷积层,weight_variable([卷积核高度,卷积核宽度,通道数,卷积核个数])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
# 激活函数及池化
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1)
h_pool = max_pool_2x2(h_conv1)
# 第2个卷积层
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
# 激活函数及池化
h_conv2 = tf.nn.relu(conv2d(h_pool, W_conv2)+b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# 设置全连接层的参数
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# 全连接层
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1)
# Dropout
keep_prob = tf.placeholder('float')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# 设置全连接层的参数
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
# softmax 函数
# y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)
with tf.name_scope('Output') as scope:
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)
# 误差函数,交叉熵代价函数
# cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
with tf.name_scope('xentropy') as scope:
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
# tf.summary.scalar()输出训练情况
ce_summ = tf.summary.scalar('cross_entropy', cross_entropy)
# 训练方法
# train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
with tf.name_scope('train') as scope:
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 测试方法
# correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
# accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
with tf.name_scope('test') as scope:
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
accuracy_summary = tf.summary.scalar('accuracy', accuracy)
# 创建训练用的会话
sess = tf.Session()
# 初始化参数
sess.run(tf.global_variables_initializer())
# 训练情况的输出设置(新增)
# 把设置的所有输出操作合并为一个操作
summary_op = tf.summary.merge_all()
# tf.summary.FileWriter()保存训练数据,graph_def为图(网络结构)
summary_writer = tf.summary.FileWriter('MNIST_data', graph_def=sess.graph_def)
st = time.time()
# 迭代处理
for i in range(1000):
# 选择训练数据(mini-batch)
batch = mnist.train.next_batch(50)
# 训练处理
_, loss_value = sess.run([train_step, cross_entropy], feed_dict={
x: batch[0], y_: batch[1], keep_prob: 0.5})
# 测试
if i % 100 == 0:
# acc = sess.run(accuracy, feed_dict={
# x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
# summary_op输出训练数据,accuracy进行测试
result = sess.run([summary_op, accuracy], feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
# 传递summary_op
summary_str = result[0]
# 传递acc
acc = result[1]
# add_summary()输出summary_str的内容
summary_writer.add_summary(summary_str, i)
print(f'卷积神经网络迭代 {i} 次的准确率:{acc}')
print(f'卷积神经网络训练时间:{time.time()-st}')
# 测试
acc = sess.run(accuracy, feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
print(f'卷积神经网络准确率:{acc}')
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:Passing a `GraphDef` to the SummaryWriter is deprecated. Pass a `Graph` object instead, such as `sess.graph`.
卷积神经网络迭代 0 次的准确率:0.11810000240802765
卷积神经网络迭代 100 次的准确率:0.8456000089645386
卷积神经网络迭代 200 次的准确率:0.9088000059127808
卷积神经网络迭代 300 次的准确率:0.9273999929428101
卷积神经网络迭代 400 次的准确率:0.935699999332428
卷积神经网络迭代 500 次的准确率:0.9404000043869019
卷积神经网络迭代 600 次的准确率:0.9490000009536743
卷积神经网络迭代 700 次的准确率:0.951200008392334
卷积神经网络迭代 800 次的准确率:0.95660001039505
卷积神经网络迭代 900 次的准确率:0.9592999815940857
卷积神经网络训练时间:374.29131293296814
卷积神经网络准确率:0.963699996471405
终端运行:tensorboard --logdir ~/Desktop/jupyter/deepLearning/图解深度学习-tensorflow/MNIST_data Starting Tensor- Board on port 6006
- 其中--logdir指定的是完整路径目录