zoukankan      html  css  js  c++  java
  • 02-26 决策树(鸢尾花分类)


    更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html

    决策树(鸢尾花分类)

    一、导入模块

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    from matplotlib.font_manager import FontProperties
    from sklearn import datasets
    from sklearn.tree import DecisionTreeClassifier
    %matplotlib inline
    font = FontProperties(fname='/Library/Fonts/Heiti.ttc')
    

    二、获取数据

    iris_data = datasets.load_iris()
    X = iris_data.data[:, [2, 3]]
    y = iris_data.target
    label_list = ['山鸢尾', '杂色鸢尾', '维吉尼亚鸢尾']
    

    三、构建决策边界

    def plot_decision_regions(X, y, classifier=None):
        marker_list = ['o', 'x', 's']
        color_list = ['r', 'b', 'g']
        cmap = ListedColormap(color_list[:len(np.unique(y))])
    
        x1_min, x1_max = X[:, 0].min()-1, X[:, 0].max()+1
        x2_min, x2_max = X[:, 1].min()-1, X[:, 1].max()+1
        t1 = np.linspace(x1_min, x1_max, 666)
        t2 = np.linspace(x2_min, x2_max, 666)
    
        x1, x2 = np.meshgrid(t1, t2)
        y_hat = classifier.predict(np.array([x1.ravel(), x2.ravel()]).T)
        y_hat = y_hat.reshape(x1.shape)
        plt.contourf(x1, x2, y_hat, alpha=0.2, cmap=cmap)
        plt.xlim(x1_min, x1_max)
        plt.ylim(x2_min, x2_max)
    
        for ind, clas in enumerate(np.unique(y)):
            plt.scatter(X[y == clas, 0], X[y == clas, 1], alpha=0.8, s=50,
                        c=color_list[ind], marker=marker_list[ind], label=label_list[clas])
    

    四、训练模型

    tree = DecisionTreeClassifier(criterion='gini', max_depth=5, random_state=1)
    tree.fit(X, y)
    
    DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=5,
                max_features=None, max_leaf_nodes=None,
                min_impurity_decrease=0.0, min_impurity_split=None,
                min_samples_leaf=1, min_samples_split=2,
                min_weight_fraction_leaf=0.0, presort=False, random_state=1,
                splitter='best')
    

    五、可视化

    plot_decision_regions(X, y, classifier=tree)
    plt.xlabel('花瓣长度(cm)', fontproperties=font)
    plt.ylabel('花瓣宽度(cm)', fontproperties=font)
    plt.legend(prop=font)
    plt.show()
    

    png

    六、可视化决策树

    import os
    import imageio
    import matplotlib.pyplot as plt
    from PIL import Image
    from pydotplus import graph_from_dot_data
    from sklearn.tree import export_graphviz
    
    # 可视化整颗决策树
    # filled=Ture添加颜色,rounded增加边框圆角
    # out_file=None直接把数据赋给dot_data,不产生中间文件.dot
    dot_data = export_graphviz(tree, filled=True, rounded=True,
                               class_names=['山鸢尾', '杂色鸢尾', '维吉尼亚鸢尾'],
                               feature_names=['花瓣长度', '花瓣宽度'], out_file=None)
    graph = graph_from_dot_data(dot_data)
    if not os.path.exists('代码-决策树.png'):
        graph.write_png('代码-决策树.png')
    
    
    def cut_img(img_path, new_width, new_height=None):
        '''只是为了等比例改变图片大小,没有其他作用'''
        img = Image.open(img_path)
        width, height = img.size
        if new_height is None:
            new_height = int(height * (new_width / width))
        new_img = img.resize((new_width, new_height), Image.ANTIALIAS)
        os.remove(img_path)
        new_img.save(img_path)
        new_img.close()
    
    
    cut_img('代码-决策树.png', 500)
    
    # 只是为了展示图片,没有其他作用
    img = imageio.imread('代码-决策树.png')
    plt.imshow(img)
    plt.show()
    

    png

  • 相关阅读:
    团队冲刺--第二阶段(五)
    团队冲刺--第二阶段(四)
    团队冲刺--第二阶段(三)
    团队冲刺--第二阶段(二)
    团队冲刺--第二阶段(一)
    第一阶段意见评论
    人月神话阅读笔记02
    基础-定位
    基础-颜色
    标准文档流
  • 原文地址:https://www.cnblogs.com/nickchen121/p/11686768.html
Copyright © 2011-2022 走看看