zoukankan      html  css  js  c++  java
  • POJ1840(哈希)

    大意

    Description

    Consider equations having the following form: 
    a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 
    The coefficients are given integers from the interval [-50,50]. 
    It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}. 

    Determine how many solutions satisfy the given equation. 

    Input

    The only line of input contains the 5 coefficients a1, a2, a3, a4, a5, separated by blanks.

    Output

    The output will contain on the first line the number of the solutions for the given equation.

    Sample Input

    37 29 41 43 47

    Sample Output

    654

    求方程解的个数。

    分析;将原式变为

    a1x13+ a2x23+ a3x33=- a4x43- a5x53

    对左式枚举哈希处理,再计算右式查询。

    代码

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #define maxn 1030307
    int hashn[maxn], nextn[maxn];
    int num[maxn];
    using namespace std;
    int main()
    {
    	int a, b, c, d, e;
    	while (~scanf("%d%d%d%d%d", &a, &b, &c, &d, &e))
    	{
    		memset(hashn, -1, sizeof(hashn));
    		int mm = 0;
    		for (int i = -50; i <= 50; i++)
    			if (i != 0)
    				for (int j = -50; j <= 50; j++)
    					if (j != 0)
    						for (int k = -50; k <= 50; k++)
    							if (k != 0)
    							{
    								int t = a*i*i*i + b*j*j*j + c*k*k*k;
    								num[mm] = t;
    								int key = t%maxn;
    								key = (key + maxn) % maxn;
    								nextn[mm] = hashn[key];
    								hashn[key] = mm;
    								mm++;
    							}
    		int sum = 0;
    		for (int i = -50; i <= 50; i++)
    			if (i != 0)
    				for (int j = -50; j <= 50; j++)
    					if (j != 0)
    					{
    						int t = -e*i*i*i - d*j*j*j;
    						int key = t%maxn;
    						key = (key + maxn) % maxn;
    						int m = hashn[key];
    						while (m != -1)
    						{
    							if (t == num[m])
    								sum++;
    							m = nextn[m];
    						}
    					}
    		printf("%d
    ", sum);
    	}
    	return 0;
    }

  • 相关阅读:
    C# 接口
    C# 多态
    C# 继承
    C# 封装
    动态规划:从新手到专家
    hduoj题目分类
    4.2 最邻近规则分类(K-Nearest Neighbor)KNN算法应用
    警惕自增的陷阱(++)
    五大常用算法之四:回溯法
    算法java实现--回溯法--图的m着色问题
  • 原文地址:https://www.cnblogs.com/nickqiao/p/7583392.html
Copyright © 2011-2022 走看看