zoukankan      html  css  js  c++  java
  • HDU P4578 Transformation

    Problem Description
    Yuanfang is puzzled with the question below:
    There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.
    Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.
    Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.
    Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.
    Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.
    Yuanfang has no idea of how to do it. So he wants to ask you to help him. 
                                                             --by HDUoj
    http://acm.hdu.edu.cn/showproblem.php?pid=4578


    因为p<4,所以,直接线段树维护区间和,平方和,立方和,三棵树,打上乘法,加法,更改标记,注意down的顺序;
    所以,会线段树的话,这题主要考代码能力......和信仰。
    记得及时取模。
    代码如下:
      1 #include<cstdio>
      2 #define mod 10007
      3 using namespace std;
      4 
      5 long long tree[4][400000];
      6 long long mark1[400000],mark2[400000],mark3[400000];
      7 
      8 int n,m,L,R;
      9 long long a,b;
     10 
     11 void work();
     12 void build(int ,int ,int );
     13 void up(int );
     14 void down(int ,int ,int );
     15 void change(int ,int ,int );
     16 long long sum(int ,int ,int );
     17 
     18 int main()
     19 {
     20     while(1)
     21     {
     22         scanf("%d%d",&n,&m);
     23         if(n==0&&m==0)
     24             return 0;
     25         work();
     26     }
     27 }
     28 
     29 void work()
     30 {
     31     int i;
     32     long long ans=0;
     33     build(1,n,1);
     34     for(i=1;i<=m;i++)
     35     {
     36         scanf("%d%d%d%d",&b,&L,&R,&a);
     37         if(b==4)
     38         {
     39                 ans=sum(1,n,1);
     40                 printf("%lld
    ",ans%mod);
     41         }
     42         else
     43             change(1,n,1);
     44     }
     45 }
     46 
     47 void build(int l,int r,int nu)
     48 {
     49     tree[1][nu]=tree[2][nu]=tree[3][nu]=mark1[nu]=mark3[nu]=0;
     50     mark2[nu]=1;
     51     if(l==r)
     52         return ;
     53     int mid=(l+r)>>1;
     54     build(l,mid,nu<<1);
     55     build(mid+1,r,nu<<1|1);
     56 }
     57 
     58 void up(int nu)
     59 {
     60     tree[1][nu]=(tree[1][nu<<1]+tree[1][nu<<1|1])%mod;
     61     tree[2][nu]=(tree[2][nu<<1]+tree[2][nu<<1|1])%mod;
     62     tree[3][nu]=(tree[3][nu<<1]+tree[3][nu<<1|1])%mod;
     63 }
     64 
     65 void down(int l,int r,int nu)
     66 {
     67     int mid=(l+r)>>1;
     68     if(mark3[nu])
     69     {
     70         tree[1][nu<<1]=tree[2][nu<<1]=tree[3][nu<<1]=0;
     71         mark1[nu<<1]=0;mark2[nu<<1]=1;
     72         mark3[nu<<1]=mark3[nu];
     73         tree[1][nu<<1|1]=tree[2][nu<<1|1]=tree[3][nu<<1|1]=0;
     74         mark1[nu<<1|1]=0;mark2[nu<<1|1]=1;
     75         mark3[nu<<1|1]=mark3[nu];
     76     }
     77     tree[3][nu<<1]=(tree[3][nu<<1]*mark2[nu]*mark2[nu]*mark2[nu])%mod;
     78     tree[2][nu<<1]=(tree[2][nu<<1]*mark2[nu]*mark2[nu])%mod;
     79     tree[1][nu<<1]=(tree[1][nu<<1]*mark2[nu])%mod;
     80     tree[3][nu<<1]=(tree[3][nu<<1]+3*tree[2][nu<<1]*mark1[nu]+3*tree[1][nu<<1]*mark1[nu]*mark1[nu]+(mid-l+1)*mark1[nu]*mark1[nu]*mark1[nu])%mod;
     81     tree[2][nu<<1]=(tree[2][nu<<1]+2*mark1[nu]*tree[1][nu<<1]+(mid-l+1)*mark1[nu]*mark1[nu])%mod;
     82     tree[1][nu<<1]=(tree[1][nu<<1]+mark1[nu]*(mid-l+1))%mod;
     83     mark2[nu<<1]=(mark2[nu<<1]*mark2[nu])%mod;
     84     mark1[nu<<1]=(mark1[nu<<1]*mark2[nu]+mark1[nu])%mod;
     85     tree[3][nu<<1|1]=(tree[3][nu<<1|1]*mark2[nu]*mark2[nu]*mark2[nu])%mod;
     86     tree[2][nu<<1|1]=(tree[2][nu<<1|1]*mark2[nu]*mark2[nu])%mod;
     87     tree[1][nu<<1|1]=(tree[1][nu<<1|1]*mark2[nu])%mod;
     88     tree[3][nu<<1|1]=(tree[3][nu<<1|1]+3*tree[2][nu<<1|1]*mark1[nu]+3*tree[1][nu<<1|1]*mark1[nu]*mark1[nu]+(r-mid)*mark1[nu]*mark1[nu]*mark1[nu])%mod;
     89     tree[2][nu<<1|1]=(tree[2][nu<<1|1]+2*mark1[nu]*tree[1][nu<<1|1]+(r-mid)*mark1[nu]*mark1[nu])%mod;
     90     tree[1][nu<<1|1]=(tree[1][nu<<1|1]+mark1[nu]*(r-mid))%mod;
     91     mark2[nu<<1|1]=(mark2[nu<<1|1]*mark2[nu])%mod;
     92     mark1[nu<<1|1]=(mark1[nu<<1|1]*mark2[nu]+mark1[nu])%mod;
     93     mark1[nu]=mark3[nu]=0;mark2[nu]=1;
     94 }
     95 
     96 void change(int l,int r,int nu)
     97 {
     98     if(L<=l&&r<=R)
     99     {
    100         if(b==3)
    101         {
    102             mark1[nu]=a;
    103             mark2[nu]=1;
    104             mark3[nu]=1;
    105             tree[1][nu]=a*(r-l+1)%mod;
    106             tree[2][nu]=(a*a*(r-l+1))%mod;
    107             tree[3][nu]=(a*a*a*(r-l+1))%mod;
    108         }
    109         if(b==2)
    110         {
    111             mark1[nu]=(mark1[nu]*a)%mod;
    112             mark2[nu]=(mark2[nu]*a)%mod;
    113             tree[1][nu]=(tree[1][nu]*a)%mod;
    114             tree[2][nu]=(tree[2][nu]*a*a)%mod;
    115             tree[3][nu]=(tree[3][nu]*a*a*a)%mod;
    116         }
    117         if(b==1)
    118         {
    119             mark1[nu]=(mark1[nu]+a)%mod;
    120             tree[3][nu]=(tree[3][nu]+3*tree[2][nu]*a+3*tree[1][nu]*a*a+(r-l+1)*a*a*a)%mod;
    121             tree[2][nu]=(tree[2][nu]+2*a*tree[1][nu]+(r-l+1)*a*a)%mod;
    122             tree[1][nu]=(tree[1][nu]+a*(r-l+1))%mod;
    123         }
    124         return;
    125     }
    126     down(l,r,nu);
    127     int mid=(l+r)>>1;
    128     if(L<=mid)
    129         change(l,mid,nu<<1);
    130     if(R>=mid+1)
    131         change(mid+1,r,nu<<1|1);
    132     up(nu);
    133 }
    134 
    135 long long sum(int l,int r,int nu)
    136 {
    137     long long su=0;
    138     if(L<=l&&r<=R)
    139         return tree[a][nu];
    140     down(l,r,nu);
    141     int mid=(l+r)>>1;
    142     if(L<=mid)
    143         su+=sum(l,mid,nu<<1);
    144     if(R>=mid+1)
    145         su+=sum(mid+1,r,nu<<1|1);
    146     su=su%mod;
    147     return su;
    148 }
    祝AC哟;
    Just close your eyes, you`ll be alright, no one can hurt you after you die.
  • 相关阅读:
    Save the problem!
    Divisiblity of Differences
    定个小目标
    Faulty Robot
    反片语 uva 156(map的使用
    Input is terminated by EOF.
    uva10815 andy的字典(set的应用)
    uva-101 搬砖问题(不定长数组vector的使用)
    回文串uva401(清简出风尘)
    WERTYU (善用常量数组
  • 原文地址:https://www.cnblogs.com/nietzsche-oier/p/6235586.html
Copyright © 2011-2022 走看看