zoukankan      html  css  js  c++  java
  • python Ridge 回归(岭回归)的原理及应用

    岭回归的原理:

    首先要了解最小二乘法的回归原理

    设有多重线性回归模型   y=Xβ+ε  ,参数β的最小二乘估计为

    当自变量间存在多重共线性,|X'X|≈0时,设想|X'X|给加上一个正常数矩阵(k>0)

    那么|X'X|+kI 接近奇异的程度就会比接近奇异的程度小得多。考虑到变量的量纲问题,

    先要对数据标准化,标准化后的设计矩阵仍用X表示,定义称为的岭回归估计,其中,

    k称为岭参数。由于假设X已经标准化,所以就是自变量样本相关阵。y可以标准化也可以未标准化,

    如果y也经过标准化,那么计算的实际是标准化岭回归估计。(k)作为β的估计应比最小二乘估计稳定,当k=0时的岭回归估计就是普通的最小二乘估计.

    因为岭参数k不是唯一确定的,所以得到的岭回归估计实际是回归参数的一个估计族。

     则岭回归的参数估计为

    python中岭回归的代码:

    主要使用python中的 scikit-learn 模块

    # 岭回归(Ridge 回归)
    from sklearn import linear_model
    X = [[0, 0], [1, 1], [2, 2]]
    y = [0, 1, 2]
    clf = linear_model.Ridge(alpha=0.1)  # 设置k值
    clf.fit(X, y)  # 参数拟合
    print(clf.coef_)  # 系数
    print(clf.intercept_)  # 常量
    print(clf.predict([[3, 3]]))  # 求预测值
    print(clf.decision_function(X))  # 求预测,等同predict
    print(clf.score(X, y))  # R^2,拟合优度
    print(clf.get_params())  # 获取参数信息
    print(clf.set_params(fit_intercept=False))  # 重新设置参数
    

     后期的详细分析应用可以自己看linear_model的用法



  • 相关阅读:
    7.Pod控制器—Job&CronJob
    6.Pod控制器—DaemonSet
    5.Pod控制器—ReplicaSet&Deployment
    0.4kubeadm参数说明
    14.Open vSwitch实现跨主机的容器之间网络互联
    p1144_最短路计数问题
    vue在dom绑定点击事件后,同时将值和事件传递
    vue中使用lodash的throttle不生效解决方案
    vuecli3项目添加pwa支持
    flutter for web跨域解决方案
  • 原文地址:https://www.cnblogs.com/niuchen/p/7211084.html
Copyright © 2011-2022 走看看