ImageDataGenerator.flow_from_directory()的用法已经非常多了,优点是简单方便,但数据量很大时,需要组织目录结构和copy数据,很浪费资源和时间
1. 训练时从txt加载数据(参考:https://blog.csdn.net/u013491950/article/details/88817310)
2. 预测时从txt加载数据:
... ... def get_gen(img_root_txt,_BS): cnt = 0 imgs = [] files = [] for n in open(img_root_txt): _n = n[:-1] files.append(_n) img_2 = image.load_img(_n, target_size=(64, 64)) img_3 = (image.img_to_array(img_2))/255 img_3 = np.expand_dims(img_3, axis=0) imgs.append(img_3) if cnt > _BS: break cnt = cnt + 1 x = np.concatenate([x for x in imgs]) print(x.shape) return x,files gen,files = get_gen('./imgs_root.txt', BS) xx = model.predict(gen) for n,m in zip(files, xx): if m[0]<m[1]: print(n, m) ... ...
注意:txt存数据路径,预测结果是各个分类的概率,!!!预测时图像预处理方式与训练时图像预处理方式需保持一致(尺寸、归一化等)