可以选择使用Spark SQL直接使用INSERT语句写入Kudu表;与'append'类似,INSERT语句实际上将默认使用UPSERT语义处理;
import org.apache.kudu.spark.kudu._ import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.SparkSession /** * Created by angel; */ object SparkSQL_insert { def main(args: Array[String]): Unit = { val sparkConf = new SparkConf().setAppName("AcctfileProcess") //设置Master_IP并设置spark参数 .setMaster("local") .set("spark.worker.timeout", "500") .set("spark.cores.max", "10") .set("spark.rpc.askTimeout", "600s") .set("spark.network.timeout", "600s") .set("spark.task.maxFailures", "1") .set("spark.speculationfalse", "false") .set("spark.driver.allowMultipleContexts", "true") .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") val sparkContext = SparkContext.getOrCreate(sparkConf) val sqlContext = SparkSession.builder().config(sparkConf).getOrCreate().sqlContext //TODO 1:定义表名 val kuduTableName = "spark_kudu_tbl" val kuduMasters = "hadoop01:7051,hadoop02:7051,hadoop03:7051" //使用spark创建kudu表 val kuduContext = new KuduContext(kuduMasters, sqlContext.sparkContext) //TODO 2:准备数据 val srcTableData = Array( Customer("enzo", 43, "oakland"), Customer("laura", 27, "vancouver")) import sqlContext.implicits._ //TODO 3:配置kudu参数 val kuduOptions: Map[String, String] = Map( "kudu.table" -> kuduTableName, "kudu.master" -> kuduMasters) //TODO 4:创建dataframe val srcTableDF = sparkContext.parallelize(srcTableData).toDF() //TODO 5:创建临时表1 srcTableDF.registerTempTable("source_table") //TODO 6:创建临时表2 sqlContext.read.options(kuduOptions).kudu.registerTempTable(kuduTableName) //TODO 7:使用sparkSQL的insert操作插入数据 sqlContext.sql(s"INSERT INTO TABLE $kuduTableName SELECT * FROM source_table") //TODO 8:查询数据 sqlContext.read.options(kuduOptions).kudu.show() } }