最近没有管测试环境的,上去看了下,好家伙,kafka羁留了上百万数据,于是打算把数据同步到测试的Hbase库中,在这期间发现了插入性能问题
def putMapData(tableName: String , columnFamily:String, key:String , mapData:Map[String , String]) = {
val startTime = System.currentTimeMillis()
val table: Table = Init(tableName , columnFamily)
val endTime = System.currentTimeMillis()
Logger.getLogger("处理事务").info(s"插入的时间:${(endTime - startTime)}")
try{
//TODO rowKeyWithMD5Prefix
val rowkey = HbaseTools.rowKeyByMD5(key)
val put: Put = new Put(rowkey)
if(mapData.size > 0){
for((k , v) <- mapData){
put.addColumn(Bytes.toBytes(columnFamily) ,Bytes.toBytes(k.toString) , Bytes.toBytes(v.toString))
}
}
table.put(put)
}catch{
case e:Exception => e.printStackTrace()
}finally {
table.close()
}
}
/** * @return 构建表的连接 * */ def Init(tableName: String , columnFamily:String):Table = { val hTableDescriptor = new HTableDescriptor(TableName.valueOf(tableName)) val hColumnDescriptor = new HColumnDescriptor(columnFamily) hTableDescriptor.addFamily(hColumnDescriptor) if(!admin.tableExists(TableName.valueOf(tableName))){ // admin.createTable(hTableDescriptor) createHTable(conn , tableName , 10 , Array(columnFamily)) } conn.getTable(TableName.valueOf(tableName)) }
发现一条数据过来,会进行一次init,就是判断这个表是不是存在的,如果不存在那么创建表,但是这个过程要50~70ms时间,海量数据下来,处理是非常慢的
也就是说:这块儿代码及其耗费时间
val hTableDescriptor = new HTableDescriptor(TableName.valueOf(tableName)) val hColumnDescriptor = new HColumnDescriptor(columnFamily) hTableDescriptor.addFamily(hColumnDescriptor) if(!admin.tableExists(TableName.valueOf(tableName))){ createHTable(conn , tableName , 10 , Array(columnFamily)) }
所以,尽量在实时处理时候,不要走这些从程序;
因此,将上面的代码提升带object的成员变量处:
private val config: Configuration = HBaseConfiguration.create() config.set("hbase.zookeeper.quorum" , GlobalConfigUtils.hbaseQuorem) config.set("hbase.master" , GlobalConfigUtils.hbaseMaster) config.set("hbase.zookeeper.property.clientPort" , GlobalConfigUtils.clientPort) config.set("hbase.rpc.timeout" , GlobalConfigUtils.rpcTimeout) config.set("hbase.client.operator.timeout" , GlobalConfigUtils.operatorTimeout) config.set("hbase.client.scanner.timeout.period" , GlobalConfigUtils.scannTimeout) private val conn: Connection = ConnectionFactory.createConnection(config) private val admin: Admin = conn.getAdmin val atomic = new AtomicInteger(0) var resultAtomic = 0 val hTableDescriptor = new HTableDescriptor(TableName.valueOf(GlobalConfigUtils.tableOrderInfo)) val hColumnDescriptor = new HColumnDescriptor(GlobalConfigUtils.tableColumnFamily) hTableDescriptor.addFamily(hColumnDescriptor) if(!admin.tableExists(TableName.valueOf(GlobalConfigUtils.tableOrderInfo))){ createHTable(conn , GlobalConfigUtils.tableOrderInfo , 10 , Array(GlobalConfigUtils.tableColumnFamily)) }private val config: Configuration = HBaseConfiguration.create() config.set("hbase.zookeeper.quorum" , GlobalConfigUtils.hbaseQuorem) config.set("hbase.master" , GlobalConfigUtils.hbaseMaster) config.set("hbase.zookeeper.property.clientPort" , GlobalConfigUtils.clientPort) config.set("hbase.rpc.timeout" , GlobalConfigUtils.rpcTimeout) config.set("hbase.client.operator.timeout" , GlobalConfigUtils.operatorTimeout) config.set("hbase.client.scanner.timeout.period" , GlobalConfigUtils.scannTimeout) private val conn: Connection = ConnectionFactory.createConnection(config) private val admin: Admin = conn.getAdmin val atomic = new AtomicInteger(0) var resultAtomic = 0 val hTableDescriptor = new HTableDescriptor(TableName.valueOf(GlobalConfigUtils.tableOrderInfo)) val hColumnDescriptor = new HColumnDescriptor(GlobalConfigUtils.tableColumnFamily) hTableDescriptor.addFamily(hColumnDescriptor) if(!admin.tableExists(TableName.valueOf(GlobalConfigUtils.tableOrderInfo))){ createHTable(conn , GlobalConfigUtils.tableOrderInfo , 10 , Array(GlobalConfigUtils.tableColumnFamily)) }
然后我在提交代码。发现:
以前的2000条数据插入时间大概需要140000ms的时间
现在处理的时间:
速度提升了大概140000 /10 倍