zoukankan      html  css  js  c++  java
  • ES的聚合操作

    构建数据:


       @Test
       public void createIndex(){
           /**
            * 创建索引
            * */
           client.admin().indices().prepareCreate("player").get();
      }



       /**
        * 创建映射
        */
       @Test
       public void testCreateIndexMapping_boost() throws Exception{
           /**
            * 格式:
            "mappings": {
               "player": {
                   "properties": {
                        "name": {"index": "not_analyzed","type": "string"},
                       "age": {"type": "integer"},
                       "salary": {"type": "integer"},
                       "team": {"index": "not_analyzed","type": "string"},
                       "position": {"index": "not_analyzed","type": "string"}
                   }
               }
            }

            */
           //构建json的数据格式,创建映射
           XContentBuilder mappingBuilder = XContentFactory.jsonBuilder()
                  .startObject()
                  .startObject("player")
                  .startObject("properties")
                  .startObject("name").field("type","string").field("index", "not_analyzed").endObject()
                  .startObject("age").field("type","integer").endObject()
                  .startObject("salary").field("type","integer").endObject()
                  .startObject("team").field("type","string").field("index", "not_analyzed").endObject()
                  .startObject("position").field("type","string").field("index", "not_analyzed").endObject()
                  .endObject()
                  .endObject()
                  .endObject();
           PutMappingRequest request = Requests.putMappingRequest("player")
                  .type("player")
                  .source(mappingBuilder);
           client.admin().indices().putMapping(request).get();
      }

       @Test
       public void BulkInsertDocument() throws IOException {
           BulkRequestBuilder bulkRequest = client.prepareBulk();

    // either use client#prepare, or use Requests# to directly build index/delete requests
           bulkRequest.add(client.prepareIndex("player", "player", "1")
                  .setSource(jsonBuilder()
                          .startObject()
                          .field("name", "郭德纲")
                          .field("age", 33)
                          .field("salary",3000)
                          .field("team" , "cav")
                          .field("position" , "sf")
                          .endObject()
                  )
          );
           bulkRequest.add(client.prepareIndex("player", "player", "2")
                  .setSource(jsonBuilder()
                          .startObject()
                          .field("name", "于谦")
                          .field("age", 25)
                          .field("salary",2000)
                          .field("team" , "cav")
                          .field("position" , "pg")
                          .endObject()
                  )
          );
           bulkRequest.add(client.prepareIndex("player", "player", "3")
                  .setSource(jsonBuilder()
                          .startObject()
                          .field("name", "岳云鹏")
                          .field("age", 29)
                          .field("salary",1000)
                          .field("team" , "war")
                          .field("position" , "pg")
                          .endObject()
                  )
          );
           bulkRequest.add(client.prepareIndex("player", "player", "4")
                  .setSource(jsonBuilder()
                          .startObject()
                          .field("name", "孙越")
                          .field("age", 26)
                          .field("salary",2000)
                          .field("team" , "war")
                          .field("position" , "sg")
                          .endObject()
                  )
          );
           bulkRequest.add(client.prepareIndex("player", "player", "5")
                  .setSource(jsonBuilder()
                          .startObject()
                          .field("name", "张云雷")
                          .field("age", 26)
                          .field("salary",2000)
                          .field("team" , "war")
                          .field("position" , "pf")
                          .endObject()
                  )
          );
           bulkRequest.add(client.prepareIndex("player", "player", "6")
                  .setSource(jsonBuilder()
                          .startObject()
                          .field("name", "爱迪生")
                          .field("age", 40)
                          .field("salary",1000)
                          .field("team" , "tim")
                          .field("position" , "pf")
                          .endObject()
                  )
          );
           bulkRequest.add(client.prepareIndex("player", "player", "7")
                  .setSource(jsonBuilder()
                          .startObject()
                          .field("name", "牛顿")
                          .field("age", 21)
                          .field("salary",500)
                          .field("team" , "tim")
                          .field("position" , "c")
                          .endObject()
                  )
          );
           bulkRequest.add(client.prepareIndex("player", "player", "4")
                  .setSource(jsonBuilder()
                          .startObject()
                          .field("name", "爱因斯坦")
                          .field("age", 21)
                          .field("salary",300)
                          .field("team" , "tim")
                          .field("position" , "sg")
                          .endObject()
                  )
          );
           bulkRequest.add(client.prepareIndex("player", "player", "8")
                  .setSource(jsonBuilder()
                          .startObject()
                          .field("name", "特斯拉")
                          .field("age", 20)
                          .field("salary",500)
                          .field("team" , "tim")
                          .field("position" , "sf")
                          .endObject()
                  )
          );


           BulkResponse bulkResponse = bulkRequest.get();
           if (bulkResponse.hasFailures()) {
               // process failures by iterating through each bulk response item
          }
      }

    1:分组求count

    计算每个球队的球员数量:

    select team, count(*) as player_count from player group by team;

    @Test
    public void groupAndCount() {
       //1:构建查询提交
       SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
       //2:指定聚合条件
       TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
       //3:将聚合条件放入查询条件中
       builder.addAggregation(team);
       //4:执行action,返回searchResponse
       SearchResponse searchResponse = builder.get();
       //5:将查询返回的searchResponse转换成map
       Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
       //6:取出聚合的字段
       StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
       System.out.println(teamTerms);
       //7:对聚合的字段进行迭代
       Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
       while (iterator.hasNext()){
           StringTerms.Bucket bucket = iterator.next();
           System.out.println("每个球队 :" + bucket.getKey() + "有 【"+bucket.getDocCount()+"】 个人");
      }

    }

    2:Group by 多个字段

    计算每个球队每个位置的球员数 select team, position, count(*) as pos_count from player group by team,position;

    /**
    * group by 多个字段
    * 计算每个球队每个位置的球员数
    * select team, position, count(*) as pos_count from player group by team, position;
    * */
    @Test
    public void groupMutilFields() {
       //1:构建查询提交
       SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
       //2:指定聚合条件
       TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
       TermsAggregationBuilder potition = AggregationBuilders.terms("position_count").field("position");
       //注意父子关系
    team.subAggregation(potition);
       //3:将聚合条件放入查询条件中
       builder.addAggregation(team).addAggregation(potition);
       //4:执行action,返回searchResponse
       SearchResponse searchResponse = builder.get();
       //5:将查询返回的searchResponse转换成map
       Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
       //6:取出聚合的字段
       StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
       //7:对聚合的字段进行迭代
       Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
       while (iterator.hasNext()){
           StringTerms.Bucket bucket = iterator.next();
           //8:获取所有子聚合
           Map<String, Aggregation> position_map = bucket.getAggregations().asMap();
           StringTerms potitionTerms = (StringTerms)position_map.get("position_count");
           //9:对子集合下面的内容迭代 队名--位置--球员
           Iterator<StringTerms.Bucket> sub_iterator = potitionTerms.getBuckets().iterator();
           while (sub_iterator.hasNext()){
               StringTerms.Bucket sub_bucket = sub_iterator.next();
               System.out.println("球队 :" + bucket.getKey() + "下面的 "+sub_bucket.getKey()+"的位置 有"+sub_bucket.getDocCount());
          }
      }
    }

    3:分组求最大

    计算每个球队年龄最大/最小/总/平均的球员年龄

    select team, max(age) as max_age from player group by team;


    /**
    * 分组求:最大值、最小值、平均值
    * 计算每个球队年龄最大/最小/总/平均的球员年龄
    select team, max(age) as max_age from player group by team;
    *
    * */
    @Test
    public void groupMax(){
       //1:构建查询提交
       SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
       //2:指定聚合条件
       TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
       //3: 指定要查哪一个字段的最大值
       MaxAggregationBuilder ageFiled = AggregationBuilders.max("max_age").field("age");
       //: 找到聚合关系:父子关系
       team.subAggregation(ageFiled);
       //3:将聚合条件放入查询条件中
       builder.addAggregation(team);
       //4:执行action,返回searchResponse
       SearchResponse searchResponse = builder.get();
       //5:将查询返回的searchResponse转换成map
       Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
       //6:取出聚合的字段
       StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
       //7:对聚合的字段进行迭代
       Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
       while (iterator.hasNext()){
           StringTerms.Bucket bucket = iterator.next();
           //8:获取所有子聚合
           Map age_map = bucket.getAggregations().asMap();
           int age = (int)((InternalMax) age_map.get("max_age")).getValue();
           System.out.println("球队 :" + bucket.getKey() + " 最大年龄: "+age);
      }
    }

    4:分组求最小

    计算每个球队年龄最大/最小/总/平均的球员年龄 select team, min(age) as max_age from player group by team;

    /**
    * 分组求:最大值、最小值、平均值
    * 计算每个球队年龄最大/最小/总/平均的球员年龄
    select team, min(age) as max_age from player group by team;
    *
    * */
    @Test
    public void groupMin(){
       //1:构建查询提交
       SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
       //2:指定聚合条件
       TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
       //3: 指定要查哪一个字段的最大值
       MinAggregationBuilder ageFiled = AggregationBuilders.min("min_age").field("age");
       //: 找到聚合关系:父子关系
       team.subAggregation(ageFiled);
       //3:将聚合条件放入查询条件中
       builder.addAggregation(team);
       //4:执行action,返回searchResponse
       SearchResponse searchResponse = builder.get();
       //5:将查询返回的searchResponse转换成map
       Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
       //6:取出聚合的字段
       StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
       //7:对聚合的字段进行迭代
       Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
       while (iterator.hasNext()){
           StringTerms.Bucket bucket = iterator.next();
           //8:获取所有子聚合
           Map age_map = bucket.getAggregations().asMap();
           int age = (int)((InternalMin) age_map.get("max_age")).getValue();
           System.out.println("球队 :" + bucket.getKey() + " 最小年龄: "+age);
      }
    }

    5:分组求平均值

    计算每个球队年龄最大/最小/总/平均的球员年龄 select team, min(age) as max_age from player group by team;

    /**
    * 分组求:最大值、最小值、平均值
    * 计算每个球队年龄最大/最小/总/平均的球员年龄
    select team, min(age) as max_age from player group by team;
    *
    * */
    @Test
    public void groupAvg(){
       //1:构建查询提交
       SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
       //2:指定聚合条件
       TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
       //3: 指定要查哪一个字段的最大值
       AvgAggregationBuilder ageFiled = AggregationBuilders.avg("avg_age").field("age");
       //: 找到聚合关系:父子关系
       team.subAggregation(ageFiled);
       //3:将聚合条件放入查询条件中
       builder.addAggregation(team);
       //4:执行action,返回searchResponse
       SearchResponse searchResponse = builder.get();
       //5:将查询返回的searchResponse转换成map
       Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
       //6:取出聚合的字段
       StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
       //7:对聚合的字段进行迭代
       Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
       while (iterator.hasNext()){
           StringTerms.Bucket bucket = iterator.next();
           //8:获取所有子聚合
           Map age_map = bucket.getAggregations().asMap();
           Double age = ((InternalAvg) age_map.get("avg_age")).getValue();
           System.out.println("球队 :" + bucket.getKey() + " 平均年龄: "+age);
      }
    }

    6:分组求和

    计算每个球队球员的平均年龄,同时又要计算总年薪 select team, avg(age)as avg_age, sum(salary) as total_salary from player group by team;

    /**
    * 分组求:最大值、最小值、平均值
    * 计算每个球队球员的平均年龄,同时又要计算总年薪
    select team, avg(age)as avg_age, sum(salary) as total_salary from player group by team;
    *
    * */
    @Test
    public void groupsum(){
       //1:构建查询提交
       SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
       //2:指定聚合条件
       TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team");
       //3: 指定要查哪一个字段
       AvgAggregationBuilder ageFiled = AggregationBuilders.avg("avg_age").field("age");

       SumAggregationBuilder salaryField= AggregationBuilders.sum("sum_salary").field("salary");
       //: 找到聚合关系:父子关系
       team.subAggregation(ageFiled).subAggregation(salaryField);
       //3:将聚合条件放入查询条件中
       builder.addAggregation(team);
       //4:执行action,返回searchResponse
       SearchResponse searchResponse = builder.get();
       //5:将查询返回的searchResponse转换成map
       Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
       //6:取出聚合的字段
       StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
       //7:对聚合的字段进行迭代
       Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
       while (iterator.hasNext()){
           StringTerms.Bucket bucket = iterator.next();
           //8:获取所有子聚合
           Map age_map = bucket.getAggregations().asMap();

           Double age = ((InternalAvg) age_map.get("avg_age")).getValue();
           double sum_salary = ((InternalSum) age_map.get("sum_salary")).getValue();
           System.out.println("球队 :" + bucket.getKey() + " 平均年龄: "+age + " 球队总salary:" + sum_salary);
      }
    }

    7:聚合排序

    计算每个球队总年薪,并按照总年薪倒序排列 select team, sum(salary) as total_salary from player group by team order by total_salary desc;

    /**
    * 排序
    计算每个球队总年薪,并按照总年薪倒序排列
    select team, sum(salary) as total_salary from player group by team order by total_salary desc;
    * */
    @Test
    public void groupOrder(){
       /**
        *
        * TermsBuilder teamAgg= AggregationBuilders.terms("team").order(Order.aggregation("total_salary ", false);
        SumBuilder salaryAgg= AggregationBuilders.avg("total_salary ").field("salary");
        sbuilder.addAggregation(teamAgg.subAggregation(salaryAgg));
        * */

       //1:构建查询提交
       SearchRequestBuilder builder = client.prepareSearch("player").setTypes("player");
       //2:指定聚合条件
       TermsAggregationBuilder team = AggregationBuilders.terms("player_count").field("team")
              .order(Terms.Order.aggregation("total_salary", false));//false是降序,true是升序
       //3: 指定要查哪一个字段
       SumAggregationBuilder salaryField= AggregationBuilders.sum("total_salary").field("salary");
       //: 找到聚合关系:父子关系
       team.subAggregation(salaryField);
       //3:将聚合条件放入查询条件中
       builder.addAggregation(team);
       //4:执行action,返回searchResponse
       SearchResponse searchResponse = builder.get();
       //5:将查询返回的searchResponse转换成map
       Map<String, Aggregation> aggregationMap = searchResponse.getAggregations().asMap();
       //6:取出聚合的字段
       StringTerms teamTerms = (StringTerms)aggregationMap.get("player_count");
       //7:对聚合的字段进行迭代
       Iterator<StringTerms.Bucket> iterator = teamTerms.getBuckets().iterator();
       while (iterator.hasNext()){
           StringTerms.Bucket bucket = iterator.next();
           //8:获取所有子聚合
           Map age_map = bucket.getAggregations().asMap();

           double sum_salary = ((InternalSum) age_map.get("total_salary")).getValue();
           System.out.println("球队 :" + bucket.getKey() + " 球队总salary:" + sum_salary);
      }
    }

     

  • 相关阅读:
    ajax请求传参数复杂对象list,后端springmvc接收参数
    SpringBoot热部署简介
    lucene 初探
    学生管理系统导包
    tomcat加入系统服务+开机自启
    sql like模糊查询的条件拼接
    SSHDemo
    Spring在web开发中的应用
    Spring的Bean内部方法调用无法使用AOP切面(CacheAble注解失效)
    dwz tree组件 取得所选择的值
  • 原文地址:https://www.cnblogs.com/niutao/p/10909310.html
Copyright © 2011-2022 走看看