zoukankan      html  css  js  c++  java
  • clickhouse 在order by非常慢的情况下优化(引擎+分段sql)

    1、展示一下order by 在上亿级别数据量有多慢

    对于clickhouse来说,当表的基础大到亿级别, 如果做查询后,在做order by 速递是非常慢的;

    比如我有一张表有3亿条数据,表结构是:

    {
    
      dvid 设备ID ,
      json 每个设备的信息 ,   dt 时间 ,   filter 过滤条件 ,   order_key 排序条件 }

    ENGINE = MergeTree
    PARTITION BY toYYYYMMDD(toDate(dt))
    PRIMARY KEY (dt, dvid)
    ORDER BY (dt, dvid)
    SETTINGS index_granularity = 256

    
    

    现在要统计3个月(1.5亿条)的设备数量,并按照order_key做排序

    给出的sql:

    select count(1) from 
    (select
    dt, toUInt32(dvid) as dvid , json fromwhere filter条件 order by order_key排序条件)

    很简单的sql,但是查询速度很慢:

    +---------+
    | count() |
    +---------+
    | 1262100 |
    +---------+
    1 row in set (37.50 sec)

    但是当你把order by去掉后,同样是数据量查询速度会非常快

    +---------+
    | count() |
    +---------+
    | 1262100 |
    +---------+
    1 row in set (1.74 sec)

    2、查看执行计划,看看为什么这么慢

    2.1、先看没有order by的执行计划:

    +-------------------------------------------------------------------------------------------------+
    | explain                                                                                         |
    +-------------------------------------------------------------------------------------------------+
    | Expression ((Projection + Before ORDER BY))                                                     |
    |   Aggregating                                                                                   |
    |     Expression ((Before GROUP BY + Projection))                                                 |
    |       SettingQuotaAndLimits (Set limits and quota after reading from storage)                   |
    |         Union                                                                                   |
    |           Expression ((Convert block structure for query from local replica + Before ORDER BY)) |
    |             SettingQuotaAndLimits (Set limits and quota after reading from storage)             |
    |               ReadFromStorage (MergeTree)                                                       |
    |           ReadFromPreparedSource (Read from remote replica)                                     |
    +-------------------------------------------------------------------------------------------------+
    9 rows in set (0.05 sec)

    大概意思是:

    第一步:从每个机器的硬盘上把数据读取出来

    第二步:union一下每个机器读取的数据

    第三步:求count

    没有order by的总耗时:1.7s

    2.2、进行order by的执行计划

    +-------------------------------------------------------------------------------------------+
    | explain                                                                                   |
    +-------------------------------------------------------------------------------------------+
    | Expression ((Projection + Before ORDER BY))                                               |
    |   Aggregating                                                                             |
    |     Expression ((Before GROUP BY + Projection))                                           |
    |       MergingSorted (Merge sorted streams for ORDER BY)                                   |
    |         SettingQuotaAndLimits (Set limits and quota after reading from storage)           |
    |           Union                                                                           |
    |             Expression (Convert block structure for query from local replica)             |
    |               FinishSorting                                                               |
    |                 Expression (Before ORDER BY)                                              |
    |                   SettingQuotaAndLimits (Set limits and quota after reading from storage) |
    |                     Expression (Remove unused columns after reading from storage)         |
    |                       Union                                                               |
    |                         MergingSorted (Merge sorting mark ranges)                         |
    |                           Expression (Calculate sorting key prefix)                       |
    |                             ReadFromStorage (MergeTree with order)                        |
    |                         MergingSorted (Merge sorting mark ranges)                         |
    |                           Expression (Calculate sorting key prefix)                       |
    |                             ReadFromStorage (MergeTree with order)                        |
    |                         MergingSorted (Merge sorting mark ranges)                         |
    |                           Expression (Calculate sorting key prefix)                       |
    |                             ReadFromStorage (MergeTree with order) 
    ...................
                    省略一摸一样的N行
                  ...................
     

    大概意思:

    1、从硬盘读取需要的数据(部分,因为order by需要在内存里面快速排序,无法读取全部)

    2、按照order by 的key进行排序

    3、N多个order by排序完的数据,在做最终汇总,然后对汇总后的数据在做排序(这一步也会根据数据量分成多步完成)

    4、最终做聚合求count

    最终order by的总耗时:37.5s

    3、优化

    3.1、切换引擎

    上一步慢、猜测可能是clickhouse的mergeTree引擎并不适合做排序操作,于是尝试了各种引擎,最终得到最适合order by的引擎:ReplicatedAggregatingMergeTree

    重建建表:

    ENGINE = ReplicatedAggregatingMergeTree('/clickhouse/tables/{shard}/库/表', '{replica}')
    PARTITION BY toYYYYMMDD(toDate(dt))
    PRIMARY KEY dvid
    ORDER BY dvid
    SETTINGS index_granularity = 8196

    然后增加表的数据量,将原来的1.5亿条 增加到3.5亿条

    执行同样的语句,测试性能:

    1、不带order by

    +---------+
    | count() |
    +---------+
    | 3290193 |
    +---------+
    1 row in set (3.58 sec)
    2、带order by的查询速度
    +---------+
    | count() |
    +---------+
    | 3290193 |
    +---------+
    1 row in set (4.16 sec)

    3.2、查看切换ReplicatedAggregatingMergeTree引擎后的执行计划

    1、不带order by的执行计划

    +-------------------------------------------------------------------------------------------------+
    | explain                                                                                         |
    +-------------------------------------------------------------------------------------------------+
    | Expression ((Projection + Before ORDER BY))                                                     |
    |   Aggregating                                                                                   |
    |     Expression ((Before GROUP BY + Projection))                                                 |
    |       SettingQuotaAndLimits (Set limits and quota after reading from storage)                   |
    |         Union                                                                                   |
    |           Expression ((Convert block structure for query from local replica + Before ORDER BY)) |
    |             SettingQuotaAndLimits (Set limits and quota after reading from storage)             |
    |               ReadFromStorage (MergeTree)                                                       |
    |           ReadFromPreparedSource (Read from remote replica)                                     |
    +-------------------------------------------------------------------------------------------------+
    9 rows in set (0.05 sec)

    不带order by的执行计划MergeTree的引擎一样,所以没任何改变,之所以查询速度从1.74s变到3.58s 是因为基础数据从原来的1.5亿变成现在的3.3亿

    2、带order by的执行计划

    +-----------------------------------------------------------------------------------------------+
    | explain                                                                                       |
    +-----------------------------------------------------------------------------------------------+
    | Expression ((Projection + Before ORDER BY))                                                   |
    |   Aggregating                                                                                 |
    |     Expression ((Before GROUP BY + Projection))                                               |
    |       MergingSorted (Merge sorted streams for ORDER BY)                                       |
    |         SettingQuotaAndLimits (Set limits and quota after reading from storage)               |
    |           Union                                                                               |
    |             Expression (Convert block structure for query from local replica)                 |
    |               MergingSorted (Merge sorted streams for ORDER BY)                               |
    |                 MergeSorting (Merge sorted blocks for ORDER BY)                               |
    |                   PartialSorting (Sort each block for ORDER BY)                               |
    |                     Expression (Before ORDER BY)                                              |
    |                       SettingQuotaAndLimits (Set limits and quota after reading from storage) |
    |                         ReadFromStorage (MergeTree)                                           |
    |             ReadFromPreparedSource (Read from remote replica)                                 |
    +-----------------------------------------------------------------------------------------------+
    14 rows in set (0.08 sec)

    对比MergeTree引擎的order by执行计划,ReplicatedAggregatingMergeTree的要简化很多

    优化点显而易见:分机器/分区/分段的读取数据做排序,在汇总 , 并且是按照block进行排序的

    1、对每台机器,按照一定范围进行PartialSorting(不按照具体数据排序,而是按照block快排序)

    2、对第一步排序好的block进行汇总排序(因为已经知道第一步block的顺序了,所以汇总的时候直接对比最大block和最小block就可以了)

    3、本地的排序好了,在做分布式的排序进行最终的汇总排序

    4、求count

    上面的操作很像归并排序,适应大数据量分布式排序

    4、对sql做优化

    【做完上一步其实已经慢满足需求了,但我们的需求并不是单纯为了求数量,而是拿到自定义时间段的某个第一个出现的东西】

    切换引擎后,查询速度有了本质的提升,接下来在对sql做优化。假如原来的sql是查询3个月的数据量,那么还可以进行分段查,比如每15天/一个月 做一次order by

    原来的sql:

    select count(1) from 
    (select 
    dt,
    toUInt32(dvid) as dvid ,
    json 
    fromwhere filter条件 and dt >= '2021-01-01' <= '2021-03-31'
    order by order_key排序条件)

    优化后的sql:

    select count(1) from (
        select dt,toUInt32(dvid) as dvid ,json fromwhere filter条件 and dt>='2021-01-01' and dt <= '2021-01-31' order by order_key排序条件
        union all
        select dt,toUInt32(dvid) as dvid ,json fromwhere filter条件 and dt>='2021-02-01' and dt <= '2021-02-31' order by order_key排序条件
        union all
        select dt,toUInt32(dvid) as dvid ,json fromwhere filter条件 and dt>='2021-03-01' and dt <= '2021-03-31' order by order_key排序条件
    )

    查询速度:

    +---------+
    | count() |
    +---------+
    | 3290193 |
    +---------+
    1 row in set (2.74 sec)

    经过优化引擎+优化sql:最终的查询速度由原来的37.5s 优化2.74s

     

  • 相关阅读:
    centos7安装sshd
    Linux搭建redist-cluster集群
    nginx离线安装,反向代理,负载均衡
    2017/12/31Java基础学习——数组输出の通过Arrays.toString()方法
    Java代码编写规范
    2017/12/27java基础学习——遇到的不懂问题
    2017/12/23Java基础学习——如何通过记事本编写代码,并通过dos界面运行Java源文件
    ZOJ3880 Demacia of the Ancients【序列处理+水题】
    ZOJ3869 Ace of Aces【序列处理】
    ZOJ3872 Beauty of Array【DP】
  • 原文地址:https://www.cnblogs.com/niutao/p/15313070.html
Copyright © 2011-2022 走看看