zoukankan      html  css  js  c++  java
  • hdu 4960 记忆化搜索 DP

    Another OCD Patient

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 490    Accepted Submission(s): 180

    Problem Description
       Xiaoji is an OCD (obsessive-compulsive disorder) patient. This morning, his children played with plasticene. They broke the plasticene into N pieces, and put them in a line. Each piece has a volume Vi. Since Xiaoji is an OCD patient, he can't stand with the disorder of the volume of the N pieces of plasticene. Now he wants to merge some successive pieces so that the volume in line is symmetrical! For example, (10, 20, 20, 10), (4,1,4) and (2) are symmetrical but (3,1,2), (3, 1, 1) and (1, 2, 1, 2) are not.
       However, because Xiaoji's OCD is more and more serious, now he has a strange opinion that merging i successive pieces into one will cost ai. And he wants to achieve his goal with minimum cost. Can you help him?
       By the way, if one piece is merged by Xiaoji, he would not use it to merge again. Don't ask why. You should know Xiaoji has an OCD.
     
    Input
       The input contains multiple test cases.
       The first line of each case is an integer N (0 < N <= 5000), indicating the number of pieces in a line. The second line contains N integers Vi, volume of each piece (0 < Vi <=10^9). The third line contains N integers ai (0 < ai <=10000), and a1 is always 0.
       The input is terminated by N = 0.
     
    Output
       Output one line containing the minimum cost of all operations Xiaoji needs.
     
    Sample Input
    5 6 2 8 7 1 0 5 2 10 20 0
     
    Sample Output
    10
    Hint
    In the sample, there is two ways to achieve Xiaoji's goal. [6 2 8 7 1] -> [8 8 7 1] -> [8 8 8] will cost 5 + 5 = 10. [6 2 8 7 1] -> [24] will cost 20.
     
    Author
    SYSU
     
    Source
     
    Recommend
    We have carefully selected several similar problems for you:  4970 4968 4967 4966 4964 
     
    记忆化搜索,由于每个碎片值都是正数,所以每个前缀和后缀都是递增的,就可以利用twopointer去找到每个相等的位置,然后下一个区间相当于一个子问题,用记忆化搜索即可,复杂度接近O(n^2)
     
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdlib>
     4 #include<cstdio>
     5 #include<algorithm>
     6 #include<cmath>
     7 #include<queue>
     8 #include<map>
     9 
    10 #define N 5005
    11 #define M 15
    12 #define mod 6
    13 #define mod2 100000000
    14 #define ll long long
    15 #define maxi(a,b) (a)>(b)? (a) : (b)
    16 #define mini(a,b) (a)<(b)? (a) : (b)
    17 
    18 using namespace std;
    19 
    20 int n;
    21 ll v[N],sum[N];
    22 int a[N],dp[N][N];
    23 
    24 int DP(int l,int r)
    25 {
    26     //int i;
    27     //ll s1,s2;
    28     if(dp[l][r]!=-1) return dp[l][r];
    29     dp[l][r]=a[r-l+1];
    30     if(l>=r) return dp[l][r]=0;
    31     
    32     //i=l;
    33     int now=l;
    34     ll re;
    35     for(int i=r;i>=l;i--){
    36         re=sum[r]-sum[i-1];
    37         while(sum[now]-sum[l-1]<re && now<i)
    38             now++;
    39         if(now==i) break;
    40         if(sum[now]-sum[l-1]==re){
    41             dp[l][r]=min(dp[l][r],DP(now+1,i-1)+a[now-l+1]+a[r-i+1]);
    42         }
    43     }
    44     return dp[l][r];
    45 }
    46 
    47 int main()
    48 {
    49     int i;
    50     //freopen("data.in","r",stdin);
    51     //scanf("%d",&T);
    52     //for(int cnt=1;cnt<=T;cnt++)
    53     //while(T--)
    54     while(scanf("%d",&n)!=EOF)
    55     {
    56         if(n==0) break;
    57         memset(dp,-1,sizeof(dp));
    58         //memset(sum,0,sizeof(sum));
    59         for(i=1;i<=n;i++){
    60             scanf("%I64d",&v[i]);
    61             sum[i]=sum[i-1]+v[i];
    62         }
    63         for(i=1;i<=n;i++){
    64             scanf("%d",&a[i]);
    65         }
    66         DP(1,n);
    67         printf("%d
    ",dp[1][n]);
    68     }
    69 
    70     return 0;
    71 }
  • 相关阅读:
    xslt转换xml常用知识(4)
    xslt转换xml
    Oracle10g数据库的4种存储形式 .转帖
    建立与Oracle数据库服务器连接的两种连接模式(专用服务器与共享服务器) .转帖
    HDU 4473 Exam 构造枚举
    zoj 1002 Fire Net (DFS搜索)
    POJ 2421 Constructing Roads 克鲁斯卡尔(Kruskal)算法
    POJ 1258 AgriNet 克鲁斯卡尔(Kruskal)算法&并查集
    POJ 2031 Building a Space Station
    判断一个数是否为整数(转)
  • 原文地址:https://www.cnblogs.com/njczy2010/p/3924538.html
Copyright © 2011-2022 走看看