zoukankan      html  css  js  c++  java
  • HDU 5001 Walk (暴力、概率dp)

    Walk

    Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 266    Accepted Submission(s): 183 Special Judge

    Problem Description
    I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.
    The nation looks like a connected bidirectional graph, and I am randomly walking on it. It means when I am at node i, I will travel to an adjacent node with the same probability in the next step. I will pick up the start node randomly (each node in the graph has the same probability.), and travel for d steps, noting that I may go through some nodes multiple times.
    If I miss some sights at a node, it will make me unhappy. So I wonder for each node, what is the probability that my path doesn't contain it.
     
    Input
    The first line contains an integer T, denoting the number of the test cases.
    For each test case, the first line contains 3 integers n, m and d, denoting the number of vertices, the number of edges and the number of steps respectively. Then m lines follows, each containing two integers a and b, denoting there is an edge between node a and node b.
    T<=20, n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no self-loops or multiple edges in the graph, and the graph is connected. The nodes are indexed from 1.
     
    Output
    For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.
    Your answer will be accepted if its absolute error doesn't exceed 1e-5.
     
    Sample Input
    2 5 10 100 1 2 2 3 3 4 4 5 1 5 2 4 3 5 2 5 1 4 1 3 10 10 10 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 4 9
     
    Sample Output
    0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.6993317967 0.5864284952 0.4440860821 0.2275896991 0.4294074591 0.4851048742 0.4896018842 0.4525044250 0.3406567483 0.6421630037
     
    Source
     
    Recommend
    hujie   |   We have carefully selected several similar problems for you:  5017 5016 5015 5014 5013 
     
     
    设dp[j][d]表示不能经过i点走了d步到达j点的概率。那么dp[j][d] = ∑ dp[k][d-1]/edge[k].size()。那么不经过i点的概率为∑dp[j][D]。(转自:http://blog.csdn.net/u013081425/article/details/39254337) (我的代码是dp[d][j])
    每次都去掉一个点求出到达 其他点的概率就是不能到达这个点的概率。(转自:http://blog.csdn.net/xu12110501127/article/details/39254403)
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdlib>
     4 #include<cstdio>
     5 #include<algorithm>
     6 #include<cmath>
     7 #include<queue>
     8 #include<map>
     9 #include<string>
    10 
    11 #define N 55
    12 #define M 15
    13 #define mod 1000000007
    14 #define p 10000007
    15 #define mod2 100000000
    16 #define ll long long
    17 #define LL long long
    18 #define maxi(a,b) (a)>(b)? (a) : (b)
    19 #define mini(a,b) (a)<(b)? (a) : (b)
    20 
    21 using namespace std;
    22 
    23 int T;
    24 int n,m,d;
    25 vector<int>bian[N];
    26 int cnt[N];
    27 double dp[10005][N];
    28 double re;
    29 
    30 void ini()
    31 {
    32     int i;
    33     int x,y;
    34     memset(cnt,0,sizeof(cnt));
    35     scanf("%d%d%d",&n,&m,&d);
    36     for(i=1;i<=n;i++){
    37         bian[i].clear();
    38     }
    39     while(m--){
    40         scanf("%d%d",&x,&y);
    41         bian[x].push_back(y);
    42         bian[y].push_back(x);
    43     }
    44     for(i=1;i<=n;i++){
    45         cnt[i]=bian[i].size();
    46     }
    47 }
    48 
    49 void solve()
    50 {
    51     int q,o,i;
    52     for(q=1;q<=n;q++)
    53     {
    54         re=0;
    55         memset(dp,0,sizeof(dp));
    56         for(i=1;i<=n;i++){
    57             if(i==q) continue;
    58             dp[0][i]=1.0/n;
    59         }
    60 
    61         for(o=1;o<=d;o++){
    62             for(i=1;i<=n;i++){
    63                 if(i==q) continue;
    64                 for(vector<int>::iterator it=bian[i].begin();it!=bian[i].end();it++){
    65                     dp[o][i]+=dp[o-1][*it]/cnt[*it];
    66                 }
    67             }
    68         }
    69 
    70         for(i=1;i<=n;i++){
    71             if(i==p) continue;
    72             re+=dp[d][i];
    73         }
    74         printf("%.10f
    ",re);
    75     }
    76 }
    77 
    78 void out()
    79 {
    80     //printf("%I64d
    ",ans);
    81 }
    82 
    83 int main()
    84 {
    85     //freopen("data.in","r",stdin);
    86     scanf("%d",&T);
    87     //for(int cnt=1;cnt<=T;cnt++)
    88     while(T--)
    89     //while(scanf("%I64d%I64d",&n,&m)!=EOF)
    90     {
    91         ini();
    92         solve();
    93       //  out();
    94     }
    95 
    96     return 0;
    97 }
  • 相关阅读:
    20200721训练记录
    20200717训练记录
    打家劫舍III(力扣第337题)
    HBase API的删除数据操作的分析
    相交链表(第160题)
    删除排序链表中的重复元素(第83题)
    合并两个有序链表(力扣第21题)
    删除链表的倒数第N个节点(第19题)
    HBase的架构原理
    回文链表、链表求和(234、445)
  • 原文地址:https://www.cnblogs.com/njczy2010/p/3972154.html
Copyright © 2011-2022 走看看