Once Vasya and Petya assembled a figure of m cubes, each of them is associated with a number between 0 and m - 1 (inclusive, each number appeared exactly once). Let's consider a coordinate system such that the OX is the ground, and the OY is directed upwards. Each cube is associated with the coordinates of its lower left corner, these coordinates are integers for each cube.
The figure turned out to be stable. This means that for any cube that is not on the ground, there is at least one cube under it such that those two cubes touch by a side or a corner. More formally, this means that for the cube with coordinates (x, y) either y = 0, or there is a cube with coordinates (x - 1, y - 1), (x, y - 1) or (x + 1, y - 1).
Now the boys want to disassemble the figure and put all the cubes in a row. In one step the cube is removed from the figure and being put to the right of the blocks that have already been laid. The guys remove the cubes in such order that the figure remains stable. To make the process more interesting, the guys decided to play the following game. The guys take out the cubes from the figure in turns. It is easy to see that after the figure is disassembled, the integers written on the cubes form a number, written in the m-ary positional numerical system (possibly, with a leading zero). Vasya wants the resulting number to be maximum possible, and Petya, on the contrary, tries to make it as small as possible. Vasya starts the game.
Your task is to determine what number is formed after the figure is disassembled, if the boys play optimally. Determine the remainder of the answer modulo 109 + 9.
The first line contains number m (2 ≤ m ≤ 105).
The following m lines contain the coordinates of the cubes xi, yi ( - 109 ≤ xi ≤ 109, 0 ≤ yi ≤ 109) in ascending order of numbers written on them. It is guaranteed that the original figure is stable.
No two cubes occupy the same place.
In the only line print the answer to the problem.
3
2 1
1 0
0 1
19
5
0 0
0 1
0 2
0 3
0 4
2930
题意:有m个方块 每个方块有一个值 并且是堆起来稳定的 一个方块可以拿掉当且仅当剩下的还是稳定的 双方轮流拿 从左到右放组成一个m进制的数 (转自 http://blog.csdn.net/u011686226/article/details/44036875)
10129550 | 2015-03-03 11:00:30 | njczy2010 | D - Cubes | GNU C++ | Accepted | 499 ms | 32596 KB |
10129479 | 2015-03-03 10:52:18 | njczy2010 | D - Cubes | GNU C++ | Wrong answer on test 21 | 421 ms | 21600 KB |
10129457 | 2015-03-03 10:49:33 | njczy2010 | D - Cubes | GNU C++ | Wrong answer on test 21 | 436 ms | 21700 KB |
10129412 | 2015-03-03 10:44:12 | njczy2010 | D - Cubes | GNU C++ | Wrong answer on test 3 | 0 ms | 41100 KB |
1 #include<iostream> 2 #include<cstring> 3 #include<cstdlib> 4 #include<cstdio> 5 #include<algorithm> 6 #include<cmath> 7 #include<queue> 8 #include<map> 9 #include<set> 10 #include<stack> 11 #include<string> 12 13 #define N 100005 14 #define M 10005 15 #define mod 1000000007 16 //#define p 10000007 17 //#define mod2 1000000009 18 #define ll long long 19 #define ull unsigned long long 20 #define LL long long 21 #define eps 1e-6 22 //#define inf 2147483647 23 #define maxi(a,b) (a)>(b)? (a) : (b) 24 #define mini(a,b) (a)<(b)? (a) : (b) 25 26 using namespace std; 27 28 int n; 29 int x[N],y[N]; 30 map<pair<int,int>,int>mp; 31 int r[N]; 32 set<int>s; 33 int ans[N]; 34 int vis[N]; 35 ll mod2=1000000009; 36 37 int ok(int i) 38 { 39 int nx,ny,te; 40 nx=x[i]-1;ny=y[i]+1; 41 te=mp[ make_pair(nx,ny) ]; 42 if(te!=0 && r[te-1]==1){ 43 return 0; 44 } 45 nx=x[i]; 46 te=mp[ make_pair(nx,ny) ]; 47 if(te!=0 && r[te-1]==1){ 48 return 0; 49 } 50 nx=x[i]+1; 51 te=mp[ make_pair(nx,ny) ]; 52 if(te!=0 && r[te-1]==1){ 53 return 0; 54 } 55 return 1; 56 } 57 58 void ini() 59 { 60 int i; 61 int nx,ny; 62 s.clear(); 63 memset(r,0,sizeof(r)); 64 memset(vis,0,sizeof(vis)); 65 for(i=0;i<n;i++){ 66 scanf("%d%d",&x[i],&y[i]); 67 mp[ make_pair(x[i],y[i]) ]=i+1; 68 } 69 for(i=0;i<n;i++){ 70 nx=x[i]-1;ny=y[i]-1; 71 if(mp[ make_pair(nx,ny) ]!=0){ 72 r[i]++; 73 } 74 nx=x[i]; 75 if(mp[ make_pair(nx,ny) ]!=0){ 76 r[i]++; 77 } 78 nx=x[i]+1; 79 if(mp[ make_pair(nx,ny) ]!=0){ 80 r[i]++; 81 } 82 } 83 for(i=0;i<n;i++){ 84 if(ok(i)==1){ 85 s.insert(i); 86 vis[i]=-1; 87 } 88 } 89 } 90 91 void changeerase(int i) 92 { 93 int nx,ny,te; 94 nx=x[i]-1;ny=y[i]-1; 95 te=mp[ make_pair(nx,ny) ]; 96 if(te!=0){ 97 if(vis[te-1]==-1){ 98 vis[te-1]=0;s.erase(te-1); 99 } 100 return; 101 } 102 nx=x[i]; 103 te=mp[ make_pair(nx,ny) ]; 104 if(te!=0){ 105 if(vis[te-1]==-1){ 106 vis[te-1]=0;s.erase(te-1); 107 } 108 return; 109 } 110 nx=x[i]+1; 111 te=mp[ make_pair(nx,ny) ]; 112 if(te!=0){ 113 if(vis[te-1]==-1){ 114 vis[te-1]=0;s.erase(te-1); 115 } 116 return; 117 } 118 } 119 120 void changeadd(int i) 121 { 122 int nx,ny,te; 123 nx=x[i]-1;ny=y[i]-1; 124 te=mp[ make_pair(nx,ny) ]; 125 if(te!=0 && ok(te-1)==1){ 126 s.insert(te-1); 127 vis[te-1]=-1; 128 } 129 nx=x[i]; 130 te=mp[ make_pair(nx,ny) ]; 131 if(te!=0 && ok(te-1)==1){ 132 s.insert(te-1); 133 vis[te-1]=-1; 134 } 135 nx=x[i]+1; 136 te=mp[ make_pair(nx,ny) ]; 137 if(te!=0 && ok(te-1)==1){ 138 s.insert(te-1); 139 vis[te-1]=-1; 140 } 141 } 142 143 void updata(int i) 144 { 145 int nx,ny,te; 146 nx=x[i]-1;ny=y[i]+1; 147 te=mp[ make_pair(nx,ny) ]; 148 if(te!=0){ 149 r[te-1]--; 150 if(r[te-1]==1) 151 changeerase(te-1); 152 } 153 nx=x[i]; 154 te=mp[ make_pair(nx,ny) ]; 155 if(te!=0){ 156 r[te-1]--; 157 if(r[te-1]==1) 158 changeerase(te-1); 159 } 160 nx=x[i]+1; 161 te=mp[ make_pair(nx,ny) ]; 162 if(te!=0){ 163 r[te-1]--; 164 if(r[te-1]==1) 165 changeerase(te-1); 166 } 167 } 168 169 void solve() 170 { 171 int i,index; 172 set<int>::iterator it; 173 for(i=0;i<n;i++){ 174 if(i%2==0){ 175 it=s.end(); 176 it--; 177 ans[i]=*it; 178 } 179 else{ 180 it=s.begin(); 181 ans[i]=*it; 182 } 183 index=*it; 184 s.erase(*it); 185 mp[ make_pair(x[index],y[index]) ]=0; 186 vis[index]=1; 187 updata(index); 188 changeadd(index); 189 } 190 } 191 192 void out() 193 { 194 int i; 195 ll aa=0; 196 /* 197 for(i=0;i<n;i++){ 198 printf("%d",ans[i]); 199 } 200 printf(" ");*/ 201 for(i=0;i<n;i++){ 202 aa=(aa*(ll)n)%mod2; 203 aa=(aa+(ll)ans[i])%mod2; 204 } 205 printf("%I64d ",aa); 206 } 207 208 int main() 209 { 210 //freopen("data.in","r",stdin); 211 //freopen("data.out","w",stdout); 212 //scanf("%d",&T); 213 //for(int ccnt=1;ccnt<=T;ccnt++) 214 //while(T--) 215 //scanf("%d%d",&n,&m); 216 while(scanf("%d",&n)!=EOF) 217 { 218 ini(); 219 solve(); 220 out(); 221 } 222 return 0; 223 }