zoukankan      html  css  js  c++  java
  • poj1470 Closest Common Ancestors [ 离线LCA tarjan ]

    传送门

    Time Limit: 2000MS   Memory Limit: 10000K
    Total Submissions: 14915   Accepted: 4745

    Description

    Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

    Input

    The data set, which is read from a the std input, starts with the tree description, in the form: 

    nr_of_vertices 
    vertex:(nr_of_successors) successor1 successor2 ... successorn 
    ...
    where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form: 
    nr_of_pairs 
    (u v) (x y) ... 

    The input file contents several data sets (at least one). 
    Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

    Output

    For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times 
    For example, for the following tree: 

    Sample Input

    5
    5:(3) 1 4 2
    1:(0)
    4:(0)
    2:(1) 3
    3:(0)
    6
    (1 5) (1 4) (4 2)
          (2 3)
    (1 3) (4 3)

    Sample Output

    2:1
    5:5

    Hint

    Huge input, scanf is recommended.

    Source

     
     
    万分感谢万能的kss,几句话就教会了窝,以下题意及题解均转自kss博客:
    http://blog.csdn.net/u011645923/article/details/35780547
     
    题意:给定一个n个结点的有向树,m次询问(u,v)的 lca,输出询问中作为lca的点以及作为lca的次数。

    思路:离线lca ,利用tarjan算法。

    tarjan算法的步骤是(当dfs到节点u时):
    1. 在并查集中建立仅有u的集合,设置该集合的祖先为u
    2. 对u的每个孩子v:
       2.1 tarjan之
       2.2 合并v到父节点u的集合,确保集合的祖先是u
    3. 设置u为已遍历
    4. 处理关于u的查询,若查询(u,v)中的v已遍历过,则LCA(u,v)=v所在的集合的祖先      

    14006525 njczy2010 1470 Accepted 2992K 516MS G++ 1979B 2015-03-25 19:29:20
      1 #include <cstdio>
      2 #include <cstring>
      3 #include <stack>
      4 #include <vector>
      5 #include <algorithm>
      6 
      7 #define ll long long
      8 int const N = 1005;
      9 int const M = 205;
     10 int const inf = 1000000000;
     11 ll const mod = 1000000007;
     12 
     13 using namespace std;
     14 
     15 int n,m;
     16 vector<int> bian[N];
     17 vector<int> query[N];
     18 int cnt[N];
     19 int fa[N];
     20 int vis[N];
     21 int degree[N];
     22 
     23 int findfa(int x)
     24 {
     25     return fa[x] == x ? fa[x] : fa[x] = findfa(fa[x]);
     26 }
     27 
     28 void ini()
     29 {
     30     int i,j;
     31     int k,u,v;
     32     memset(cnt,0,sizeof(cnt));
     33     memset(vis,0,sizeof(vis));
     34     memset(degree,0,sizeof(degree));
     35     for(i=1;i<=n;i++){
     36         bian[i].clear();
     37         query[i].clear();
     38         fa[i]=i;
     39     }
     40     for(i=1;i<=n;i++){
     41         scanf("%d:(%d)",&u,&k);
     42         for(j=0;j<k;j++){
     43             scanf("%d",&v);
     44             bian[u].push_back(v);
     45             degree[v]++;
     46         }
     47     }
     48     scanf("%d",&m);
     49     for(i=1;i<=m;i++){
     50         while(getchar()!='(') ;
     51         scanf("%d%d",&u,&v);
     52         while(getchar()!=')') ;
     53         query[u].push_back(v);
     54         query[v].push_back(u);
     55     }
     56 }
     57 
     58 void tarjan(int u,int f)
     59 {
     60     vector<int>::iterator it;
     61     int v;
     62     for(it=bian[u].begin();it!=bian[u].end();it++){
     63         v=*it;
     64         tarjan(v,u);
     65     }
     66 
     67     for(it=query[u].begin();it!=query[u].end();it++){
     68         v=*it;
     69         if(vis[v]==0) continue;
     70         cnt[ findfa(v) ]++;
     71     }
     72     vis[u]=1;
     73     fa[u]=f;
     74 }
     75 
     76 void solve()
     77 {
     78     int i;
     79     for(i=1;i<=n;i++){
     80         if(degree[i]==0){
     81             tarjan(i,-1);
     82         }
     83     }
     84 }
     85 
     86 void out()
     87 {
     88     int i;
     89     for(i=1;i<=n;i++){
     90          //   printf("%d:%d
    ",i,cnt[i]);
     91         if(cnt[i]!=0){
     92             printf("%d:%d
    ",i,cnt[i]);
     93         }
     94     }
     95 }
     96 
     97 int main()
     98 {
     99     //freopen("data.in","r",stdin);
    100     //scanf("%d",&T);
    101    // for(cnt=1;cnt<=T;cnt++)
    102     //while(T--)
    103     while(scanf("%d",&n)!=EOF)
    104     {
    105         ini();
    106         solve();
    107         out();
    108     }
    109 }
  • 相关阅读:
    Zebra命令模式分析(一)  分析
    sublime text2
    开源路由软件zebra的命令存储原理及使用方法
    开源路由软件zebra介绍和和在Linux环境下的安装
    jQuery删除节点
    如何成为一名软件架构师
    jQuery中的DOM操作
    编写自己的Shell解释器
    Notepad++集成VC2010环境
    ffmpeg使用语法
  • 原文地址:https://www.cnblogs.com/njczy2010/p/4366700.html
Copyright © 2011-2022 走看看