zoukankan      html  css  js  c++  java
  • leetcode 375. Guess Number Higher or Lower II

    传送门

    375. Guess Number Higher or Lower II

     
     My Submissions
     
    • Total Accepted: 1546
    • Total Submissions: 5408
    • Difficulty: Medium

    We are playing the Guess Game. The game is as follows:

    I pick a number from 1 to n. You have to guess which number I picked.

    Every time you guess wrong, I'll tell you whether the number I picked is higher or lower.

    However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when you guess the number I picked.

    Example:

    n = 10, I pick 8.
    
    First round:  You guess 5, I tell you that it's higher. You pay $5.
    Second round: You guess 7, I tell you that it's higher. You pay $7.
    Third round:  You guess 9, I tell you that it's lower. You pay $9.
    
    Game over. 8 is the number I picked.
    
    You end up paying $5 + $7 + $9 = $21.
    

    Given a particular n ≥ 1, find out how much money you need to have to guarantee a win

    题解转自:

    http://blog.csdn.net/adfsss/article/details/51951658

    题目大意还是猜数游戏,不过这次的重点换了,题目要求你猜错了就得付与你所猜的数目一致的钱,最后应求出保证你能赢的钱数(即求出保证你获胜的最少的钱数),题目的提示是动态规划,自己吃的不太透,想着之前做过的动态规划都是从初始条件出发,再推出后面的值,于是就噗嗤噗嗤地写了前面几种情况在找规律,算了下,发现max(后四位的所应判断的钱数,倒数第四位的钱数+前面的钱数)好像挺有可能的,但提交的时候发现n大于19时就统统过不了了,于是果断否决了自己的想法,因为找规律这个想法完全说服不了自己为什么这样求出的是最小值,在这里也给自己敲了一个警钟,不要试图用侥幸的心理来蒙骗自己,网上了搜一番后,发现没有讲的比较清楚的博客,统统都是贴代码(っ*´Д`)っ(理解不了了喂),后面在leetcode的discuss里面有两句英文让自己一下子就懂了.

    具体是这样的,在1-n个数里面,我们任意猜一个数(设为i),保证获胜所花的钱应该为 i + max(w(1 ,i-1), w(i+1 ,n)),这里w(x,y))表示猜范围在(x,y)的数保证能赢应花的钱,则我们依次遍历 1-n作为猜的数,求出其中的最小值即为答案,即最小的最大值问题

    转:

    C++ vector多维数组初始化及清零

    http://blog.csdn.net/xiaxiazls/article/details/50018225

    定义并初始化二维数组
    
    vector<vector <int> > ivec(m ,vector<int>(n,0)); //m*n的二维vector,所有元素初始化为0
     1 class Solution {
     2 public:
     3     int getMoneyAmount(int n) {
     4         //vector<vector <int> > ivec(m ,vector<int>(n,0)); //m*n的二维vector,所有元素初始化为0
     5         vector<vector <int> > dp(n + 1 ,vector<int>(n + 1, INT_MAX)); //n*n的二维vector,所有元素初始化为INT_MAX
     6         dfs(dp,1,n);
     7         return dp[1][n];
     8     }
     9     int dfs(vector<vector <int> > &dp,int l,int r){
    10         if(dp[l][r] != INT_MAX){
    11             return dp[l][r];
    12         }
    13         if(l == r){
    14             return dp[l][r] = 0;
    15         }
    16         if(l + 1 == r){
    17             return dp[l][r] = l;
    18         }
    19         int i;
    20         for(i = l + 1;i <= r - 1;i++){
    21             dp[l][r] = min(dp[l][r],i + max(dfs(dp,l,i - 1),dfs(dp,i + 1,r) ) );
    22         }
    23         return dp[l][r];
    24     }
    25 };
  • 相关阅读:
    递归
    二叉树
    IIs 网站应用程序与虚拟目录的区别及高级应用说明(文件分布式存储方案)
    Python时间,日期,时间戳之间转换
    jquery 时间戳和日期时间转化
    javascript 中解析json
    设计模式之单例模式
    深入理解DIP、IoC、DI以及IoC容器
    《大型网站技术架构》读书笔记一:大型网站架构演化
    Key/Value之王Memcached初探:二、Memcached在.Net中的基本操作
  • 原文地址:https://www.cnblogs.com/njczy2010/p/5687787.html
Copyright © 2011-2022 走看看