zoukankan      html  css  js  c++  java
  • python中的各种模块(np,os,shutill)

    PS:本博文摘抄自中国慕课大学上的课程《Python数据分析与展示》,推荐刚入门的同学去学习,这是非常好的入门视频。

    #np模块

    .ndim :维度 
    .shape :各维度的尺度 (2,5) 
    .size :元素的个数 10 
    .dtype :元素的类型 dtype(‘int32’) 
    .itemsize :每个元素的大小,以字节为单位 ,每个元素占4个字节 
    ndarray数组的创建 
    np.arange(n) ; 元素从0到n-1的ndarray类型 
    np.ones(shape): 生成全1 
    np.zeros((shape), ddtype = np.int32) : 生成int32型的全0 
    np.full(shape, val): 生成全为val 
    np.eye(n) : 生成单位矩阵

    np.ones_like(a) : 按数组a的形状生成全1的数组 
    np.zeros_like(a): 同理 
    np.full_like (a, val) : 同理

    np.linspace(1,10,4): 根据起止数据等间距地生成数组 
    np.linspace(1,10,4, endpoint = False):endpoint 表示10是否作为生成的元素 
    np.concatenate():多个数组的拼接

    • 数组的维度变换

    .reshape(shape) : 不改变当前数组,依shape生成 
    .resize(shape) : 改变当前数组,依shape生成 
    .swapaxes(ax1, ax2) : 将两个维度调换 
    .flatten() : 对数组进行降维,返回折叠后的一位数组

    • 数组的类型变换

    数据类型的转换 :a.astype(new_type) : eg, a.astype (np.float) 
    数组向列表的转换: a.tolist() 
    数组的索引和切片

    • 一维数组切片

    a = np.array ([9, 8, 7, 6, 5, ]) 
    a[1:4:2] –> array([8, 6]) : a[起始编号:终止编号(不含): 步长]

    • 多维数组索引

    a = np.arange(24).reshape((2, 3, 4)) 
    a[1, 2, 3] 表示 3个维度上的编号, 各个维度的编号用逗号分隔

    • 多维数组切片

    a [:,:,::2 ] 缺省时,表示从第0个元素开始,到最后一个元素 
    数组的运算 
    np.abs(a) np.fabs(a) : 取各元素的绝对值 
    np.sqrt(a) : 计算各元素的平方根 
    np.square(a): 计算各元素的平方 
    np.log(a) np.log10(a) np.log2(a) : 计算各元素的自然对数、10、2为底的对数 
    np.ceil(a) np.floor(a) : 计算各元素的ceiling 值, floor值(ceiling向上取整,floor向下取整) 
    np.rint(a) : 各元素 四舍五入 
    np.modf(a) : 将数组各元素的小数和整数部分以两个独立数组形式返回 
    np.exp(a) : 计算各元素的指数值 
    np.sign(a) : 计算各元素的符号值 1(+),0,-1(-) 

    np.maximum(a, b) np.fmax() : 比较(或者计算)元素级的最大值 
    np.minimum(a, b) np.fmin() : 取最小值 
    np.mod(a, b) : 元素级的模运算 
    np.copysign(a, b) : 将b中各元素的符号赋值给数组a的对应元素

    • 数据的CSV文件存取

    CSV (Comma-Separated Value,逗号分隔值) 只能存储一维和二维数组

    np.savetxt(frame, array, fmt=’% .18e’, delimiter = None): frame是文件、字符串等,可以是.gz .bz2的压缩文件; array 表示存入的数组; fmt 表示元素的格式 eg: %d % .2f % .18e ; delimiter: 分割字符串,默认是空格 
    eg: np.savetxt(‘a.csv’, a, fmt=%d, delimiter = ‘,’ )

    np.loadtxt(frame, dtype=np.float, delimiter = None, unpack = False) : frame是文件、字符串等,可以是.gz .bz2的压缩文件; dtype:数据类型,读取的数据以此类型存储; delimiter: 分割字符串,默认是空格; unpack: 如果为True, 读入属性将分别写入不同变量。 
    多维数据的存取 
    a.tofile(frame, sep=’’, format=’%s’ ) : frame: 文件、字符串; sep: 数据分割字符串,如果是空串,写入文件为二进制 ; format:: 写入数据的格式 
    eg: a = np.arange(100).reshape(5, 10, 2) 
    a.tofile(“b.dat”, sep=”,”, format=’%d’)

    np.fromfile(frame, dtype = float, count=-1, sep=’’): frame: 文件、字符串 ; dtype: 读取的数据以此类型存储; count:读入元素个数, -1表示读入整个文件; sep: 数据分割字符串,如果是空串,写入文件为二进制

    PS: a.tofile() 和np.fromfile()要配合使用,要知道数据的类型和维度。

    np.save(frame, array) : frame: 文件名,以.npy为扩展名,压缩扩展名为.npz ; array为数组变量 
    np.load(fname) : frame: 文件名,以.npy为扩展名,压缩扩展名为

    np.save() 和np.load() 使用时,不用自己考虑数据类型和维度。

    • numpy随机数函数

    numpy 的random子库

    rand(d0, d1, …,dn) : 各元素是[0, 1)的浮点数,服从均匀分布 
    randn(d0, d1, …,dn):标准正态分布 
    randint(low, high,( shape)): 依shape创建随机整数或整数数组,范围是[ low, high) 
    seed(s) : 随机数种子

    shuffle(a) : 根据数组a的第一轴进行随机排列,改变数组a 
    permutation(a) : 根据数组a的第一轴进行随机排列, 但是不改变原数组,将生成新数组 
    choice(a[, size, replace, p]) : 从一维数组a中以概率p抽取元素, 形成size形状新数组,replace表示是否可以重用元素,默认为False。 
    eg:  
    replace = False时,选取过的元素将不会再选取

    uniform(low, high, size) : 产生均匀分布的数组,起始值为low,high为结束值,size为形状 
    normal(loc, scale, size) : 产生正态分布的数组, loc为均值,scale为标准差,size为形状 
    poisson(lam, size) : 产生泊松分布的数组, lam随机事件发生概率,size为形状 
    eg: a = np.random.uniform(0, 10, (3, 4)) a = np.random.normal(10, 5, (3, 4))

    • numpy的统计函数

    sum(a, axis = None) : 依给定轴axis计算数组a相关元素之和,axis为整数或者元组 
    mean(a, axis = None) : 同理,计算平均值 
    average(a, axis =None, weights=None) : 依给定轴axis计算数组a相关元素的加权平均值 
    std(a, axis = None) :同理,计算标准差 
    var(a, axis = None): 计算方差 
    eg: np.mean(a, axis =1) : 对数组a的第二维度的数据进行求平均 
    a = np.arange(15).reshape(3, 5) 
    np.average(a, axis =0, weights =[10, 5, 1]) : 对a第一各维度加权求平均,weights中为权重,注意要和a的第一维匹配

    min(a) max(a) : 计算数组a的最小值和最大值 
    argmin(a) argmax(a) : 计算数组a的最小、最大值的下标(注:是一维的下标) 
    unravel_index(index, shape) : 根据shape将一维下标index转成多维下标 
    ptp(a) : 计算数组a最大值和最小值的差 
    median(a) : 计算数组a中元素的中位数(中值) 
    eg:a = [[15, 14, 13], 
    [12, 11, 10] ] 
    np.argmax(a) –> 0 
    np.unravel_index( np.argmax(a), a.shape) –> (0,0)

    • numpy的梯度函数

    np.gradient(a) : 计算数组a中元素的梯度,f为多维时,返回每个维度的梯度 
    离散梯度: xy坐标轴连续三个x轴坐标对应的y轴值:a, b, c 其中b的梯度是(c-a)/2 
    而c的梯度是: (c-b)/1

    当为二维数组时,np.gradient(a) 得出两个数组,第一个数组对应最外层维度的梯度,第二个数组对应第二层维度的梯度。 

    • 图像的表示和变换

    PIL, python image library 库 
    from PIL import Image 
    Image是PIL库中代表一个图像的类(对象)

    im = np.array(Image.open(“.jpg”))

    im = Image.fromarray(b.astype(‘uint8’)) # 生成 
    im.save(“路径.jpg”) # 保存

    im = np.array(Image.open(“.jpg”).convert(‘L’)) # convert(‘L’)表示转为灰度图

     补充:np.where:

    返回符合某一条件的下标的函数,不过np.where()并不接受list类型的参数,可见np.where()既可以接收三个参数,用于三目运算,也可接收一个参数,返回符合条件的下标。

    >>a = np.array(a)
    >>a
    array([1, 2, 3, 1, 2, 3, 1, 2, 3])
    >>idx = np.where(a > 2)
    >>idx
    (array([2, 5, 8], dtype=int32),)
    >>a[idx]               # 这种做法并不推荐
    array([3, 3, 3])        
    >>a[a>2]               # 推荐的做法
    array([3, 3, 3])   

    注意,这种情况下,也即 np.where() 用于返回断言成立时的索引,返回值的形式为 arrays of tuple,由 np.array 构成的 tuple,一般 tuple 的 len 为2(当判断的对象是多维数组时),哪怕是一维数组返回的仍是 tuple,此时tuple 的 len 为 1;

    • np.where()[0] 表示行的索引,
    • np.where()[1] 则表示列的索引

    np.where()用于三目运算的情况:

    >>y = np.array([1, 2, 3, 4, 5, 6])  # 将奇数转换为偶数,偶数转换为奇数
    >>y = np.where(y%2 == 0, y+1, y-1) #当符合条件y%2==0时是y+1,不符合是y-1,常用于根据一个数组产生另一个新的数组。
    >>y 
    array([0, 3, 2, 5, 4, 7])
     
     

    # os 模块

    os.sep 可以取代操作系统特定的路径分隔符。windows下为 '\'
    os.name 字符串指示你正在使用的平台。比如对于Windows,它是'nt',而对于Linux/Unix用户,它是 'posix'
    os.getcwd() 函数得到当前工作目录,即当前Python脚本工作的目录路径
    os.getenv() 获取一个环境变量,如果没有返回none
    os.putenv(key, value) 设置一个环境变量值
    os.listdir(path) 返回指定目录下的所有文件和目录名
    os.remove(path) 函数用来删除一个文件
    os.system(command) 函数用来运行shell命令
    os.linesep 字符串给出当前平台使用的行终止符。例如,Windows使用 ' ',Linux使用 ' ' 而Mac使用 ' '
    os.path.split(path)  函数返回一个路径的目录名和文件名
    os.path.isfile() 和os.path.isdir()函数分别检验给出的路径是一个文件还是目录
    os.path.exists() 函数用来检验给出的路径是否真地存在
    os.curdir  返回当前目录 ('.')
    os.mkdir(path) 创建一个目录
    os.makedirs(path) 递归的创建目录
    os.chdir(dirname) 改变工作目录到dirname    
    os.path.getsize(name) 获得文件大小,如果name是目录返回0L
    os.path.abspath(name) 获得绝对路径
    os.path.normpath(path) 规范path字符串形式
    os.path.splitext()  分离文件名与扩展名
    os.path.join(path,name) 连接目录与文件名或目录
    os.path.basename(path) 返回文件名
    os.path.dirname(path) 返回文件路径
    os.walk(top,topdown=True,onerror=None)  遍历迭代目录
    os.rename(src, dst)  重命名file或者directory src到dst 如果dst是一个存在的directory, 将抛出OSError. 在Unix, 如果dst在存且是一个file, 如果用户有权限的话,它将被安静的替换. 操作将会失败在某些Unix 中如果src和dst在不同的文件系统中. 如果成功, 这命名操作将会是一个原子操作 (这是POSIX 需要). 在 Windows上, 如果dst已经存在, 将抛出OSError,即使它是一个文件. 在unix,Windows中有效。
    os.renames(old, new) 递归重命名文件夹或者文件。像rename()

    # shutil 模块

    shutil.copyfile( src, dst) 从源src复制到dst中去。当然前提是目标地址是具备可写权限。抛出的异常信息为IOException. 如果当前的dst已存在的话就会被覆盖掉
    shutil.move( src, dst)  移动文件或重命名
    shutil.copymode( src, dst) 只是会复制其权限其他的东西是不会被复制的
    shutil.copystat( src, dst) 复制权限、最后访问时间、最后修改时间
    shutil.copy( src, dst)  复制一个文件到一个文件或一个目录
    shutil.copy2( src, dst)  在copy上的基础上再复制文件最后访问时间与修改时间也复制过来了,类似于cp –p的东西
    shutil.copy2( src, dst)  如果两个位置的文件系统是一样的话相当于是rename操作,只是改名;如果是不在相同的文件系统的话就是做move操作
    shutil.copytree( olddir, newdir, True/Flase)
    把olddir拷贝一份newdir,如果第3个参数是True,则复制目录时将保持文件夹下的符号连接,如果第3个参数是False,则将在复制的目录下生成物理副本来替代符号连接
    shutil.rmtree( src ) 递归删除一个目录以及目录内的所有内容

  • 相关阅读:
    JavasScript 实现二分法快排注意点
    JS的面向对象二(通过构造函数的方式)
    JS的面向对象一(通过构造函数的方式)
    leetcode.977_有序数组的平方
    leetcode_38.报数
    leetcode_20.c++有效的括号
    leetcode_21.c++合并两个有序列表
    leetcode_最长公共前缀
    T2_两数相加
    T1_两数之和
  • 原文地址:https://www.cnblogs.com/nkh222/p/7642611.html
Copyright © 2011-2022 走看看