zoukankan      html  css  js  c++  java
  • 使用R语言的RTCGA包获取TCGA数据--转载

    转载生信技能树 https://mp.weixin.qq.com/s/JB_329LCWqo5dY6MLawfEA

    •  TCGA数据源

    • - R包RTCGA的简单介绍

    • - 首先安装及加载包

    • - 指定任意基因从任意癌症里面获取芯片表达数据

    • - 绘制指定基因在不同癌症的表达量区别boxplot

    • - 更多boxplot参数

    • - 指定任意基因从任意癌症里面获取测序表达数据

    • - 用全部的rnaseq的表达数据来做主成分分析

    • - 用5个基因在3个癌症的表达量做主成分分析

    • - 用突变数据做生存分析

    • - 多个基因在多种癌症的表达量热图

    正文

    TCGA数据源

    众所周知,TCGA数据库是目前最综合全面的癌症病人相关组学数据库,包括的测序数据有:

    • DNA Sequencing

    • miRNA Sequencing

    • Protein Expression

    • mRNA Sequencing

    • Total RNA Sequencing

    • Array-based Expression

    • DNA Methylation

    • Copy Number

    知名的肿瘤研究机构都有着自己的TCGA数据库探索工具,比如:

    • Broad Institute FireBrowse portal, The Broad Institute

    • cBioPortal for Cancer Genomics, Memorial Sloan-Kettering Cancer Center

    • TCGA Batch Effects, MD Anderson Cancer Center

    • Regulome Explorer, Institute for Systems Biology

    • Next-Generation Clustered Heat Maps, MD Anderson Cancer Center

    R包RTCGA的简单介绍

    而RTCGA这个包是 Marcin Marcin Kosinski et al. 等人开发的,工作流程如下:

    img

    这不是简单的一个包,而是一系列根据数据类型分离的包,相当于要先下载这些离线数据R包之后再直接从离线数据包里面获取TCGA的所有数据。

    作者写了详细的文档: https://rtcga.github.io/RTCGA/index.html

    最新的数据版本是2016-01-28,可以加载以下的包:

    • RTCGA.mutations.20160128

    • RTCGA.rnaseq.20160128

    • RTCGA.clinical.20160128

    • RTCGA.mRNA.20160128

    • RTCGA.miRNASeq.20160128

    • RTCGA.RPPA.20160128

    • RTCGA.CNV.20160128

    • RTCGA.methylation.20160128

    旧版本已经可以考虑弃用了,下面是基于 2015-11-01 版本的 TCGA 数据

    • RTCGA.mutations

    • RTCGA.rnaseq

    • RTCGA.clinical

    • RTCGA.PANCAN12

    • RTCGA.mRNA

    • RTCGA.miRNASeq

    • RTCGA.RPPA

    • RTCGA.CNV

    • RTCGA.methylation

    这里就介绍如何使用R语言的RTCGA包来获取任意TCGA数据吧。

    首先安装及加载包

    这里仅仅是测序mRNA表达量数据以及临床信息,所以只需要下载及安装下面的包:

    # Load the bioconductor installer. 
    source("https://bioconductor.org/biocLite.R")
    # Install the main RTCGA package
    biocLite("RTCGA")
    # Install the clinical and mRNA gene expression data packages
    biocLite("RTCGA.clinical") ## 14Mb
    biocLite('RTCGA.rnaseq') ##  (612.6 MB)
    biocLite("RTCGA.mRNA") ##  (85.0 MB)
    biocLite('RTCGA.mutations')  ## (103.8 MB)

    安装成功之后就可以加载,可以看到,有些数据包非常大,如果网速不好,下载会很可怕。也可以自己想办法独立下载。

    https://bioconductor.org/packages/3.6/data/experiment/src/contrib/RTCGA.rnaseq_20151101.8.0.tar.gz
    https://bioconductor.org/packages/3.6/data/experiment/src/contrib/RTCGA.mRNA_1.6.0.tar.gz
    https://bioconductor.org/packages/3.6/data/experiment/src/contrib/RTCGA.clinical_20151101.8.0.tar.gz
    https://bioconductor.org/packages/3.6/data/experiment/src/contrib/RTCGA.mutations_20151101.8.0.tar.gz
    library(RTCGA)
    ## Welcome to the RTCGA (version: 1.8.0).
    all_TCGA_cancers=infoTCGA()
    DT::datatable(all_TCGA_cancers)
    library(RTCGA.clinical) 
    library(RTCGA.mRNA)
    ## ?mRNA
    ## ?clinical

    指定任意基因从任意癌症里面获取芯片表达数据

    这里我们拿下面3种癌症做示范:

    • Breast invasive carcinoma (BRCA)

    • Ovarian serous cystadenocarcinoma (OV)

    • Lung squamous cell carcinoma (LUSC)

    library(RTCGA)
    library(RTCGA.mRNA)
    expr <- expressionsTCGA(BRCA.mRNA, OV.mRNA, LUSC.mRNA,
                           extract.cols = c("GATA3", "PTEN", "XBP1","ESR1", "MUC1"))
    ## Warning in flatten_bindable(dots_values(...)): '.Random.seed' is not an
    ## integer vector but of type 'NULL', so ignored
    expr
    ## # A tibble: 1,305 x 7
    ##             bcr_patient_barcode   dataset     GATA3       PTEN      XBP1
    ##                           <chr>     <chr>     <dbl>      <dbl>     <dbl>
    ##  1 TCGA-A1-A0SD-01A-11R-A115-07 BRCA.mRNA  2.870500  1.3613571  2.983333
    ##  2 TCGA-A1-A0SE-01A-11R-A084-07 BRCA.mRNA  2.166250  0.4283571  2.550833
    ##  3 TCGA-A1-A0SH-01A-11R-A084-07 BRCA.mRNA  1.323500  1.3056429  3.020417
    ##  4 TCGA-A1-A0SJ-01A-11R-A084-07 BRCA.mRNA  1.841625  0.8096429  3.131333
    ##  5 TCGA-A1-A0SK-01A-12R-A084-07 BRCA.mRNA -6.025250  0.2508571 -1.451750
    ##  6 TCGA-A1-A0SM-01A-11R-A084-07 BRCA.mRNA  1.804500  1.3107857  4.041083
    ##  7 TCGA-A1-A0SO-01A-22R-A084-07 BRCA.mRNA -4.879250 -0.2369286 -0.724750
    ##  8 TCGA-A1-A0SP-01A-11R-A084-07 BRCA.mRNA -3.143250 -1.2432143 -1.193083
    ##  9 TCGA-A2-A04N-01A-11R-A115-07 BRCA.mRNA  2.034000  1.2074286  2.278833
    ## 10 TCGA-A2-A04P-01A-31R-A034-07 BRCA.mRNA -0.293125  0.2883571 -1.605083
    ## # ... with 1,295 more rows, and 2 more variables: ESR1 <dbl>, MUC1 <dbl>

    可以看到我们感兴趣的5个基因在这3种癌症的表达量数据都获取了,但是样本量并不一定是最新的TCGA样本量,如下:

    nb_samples <- table(expr$dataset)
    nb_samples
    ## 
    ## BRCA.mRNA LUSC.mRNA   OV.mRNA
    ##       590       154       561

    其中要注意的是mRNA并不是rnaseq,两者不太一样,具体样本数量,可以看最前面的表格。

    下面简化一下标识,方便可视化展现

    expr$dataset <- gsub(pattern = ".mRNA", replacement = "",  expr$dataset)
    expr$bcr_patient_barcode <- paste0(expr$dataset, c(1:590, 1:561, 1:154))
    expr
    ## # A tibble: 1,305 x 7
    ##    bcr_patient_barcode dataset     GATA3       PTEN      XBP1       ESR1
    ##                  <chr>   <chr>     <dbl>      <dbl>     <dbl>      <dbl>
    ##  1               BRCA1    BRCA  2.870500  1.3613571  2.983333  3.0842500
    ##  2               BRCA2    BRCA  2.166250  0.4283571  2.550833  2.3860000
    ##  3               BRCA3    BRCA  1.323500  1.3056429  3.020417  0.7912500
    ##  4               BRCA4    BRCA  1.841625  0.8096429  3.131333  2.4954167
    ##  5               BRCA5    BRCA -6.025250  0.2508571 -1.451750 -4.8606667
    ##  6               BRCA6    BRCA  1.804500  1.3107857  4.041083  2.7970000
    ##  7               BRCA7    BRCA -4.879250 -0.2369286 -0.724750 -4.4860833
    ##  8               BRCA8    BRCA -3.143250 -1.2432143 -1.193083 -1.6274167
    ##  9               BRCA9    BRCA  2.034000  1.2074286  2.278833  4.1155833
    ## 10              BRCA10    BRCA -0.293125  0.2883571 -1.605083  0.4731667
    ## # ... with 1,295 more rows, and 1 more variables: MUC1 <dbl>

    绘制指定基因在不同癌症的表达量区别boxplot

    library(ggpubr)
    ## Loading required package: ggplot2
    ## Loading required package: magrittr
    # GATA3
    ggboxplot(expr, x = "dataset", y = "GATA3",
             title = "GATA3", ylab = "Expression",
             color = "dataset", palette = "jco")

    img

    # PTEN
    ggboxplot(expr, x = "dataset", y = "PTEN",
             title = "PTEN", ylab = "Expression",
             color = "dataset", palette = "jco")

    img

    ## 注意这个配色可以自选的: RColorBrewer::display.brewer.all()  

    这里选择的是 ggsci 包的配色方案,包括: “npg”, “aaas”, “lancet”, “jco”, “ucscgb”, “uchicago”, “simpsons” and “rickandmorty”,针对常见的SCI杂志的需求开发的。

    还可以加上P值信息

    my_comparisons <- list(c("BRCA", "OV"), c("OV", "LUSC"))
    ggboxplot(expr, x = "dataset", y = "GATA3",
             title = "GATA3", ylab = "Expression",
             color = "dataset", palette = "jco")+
     stat_compare_means(comparisons = my_comparisons)

    img

    这些统计学检验,也是被包装成了函数:

    compare_means(c(GATA3, PTEN, XBP1) ~ dataset, data = expr)
    ## # A tibble: 9 x 8
    ##      .y. group1 group2             p         p.adj p.format p.signif
    ##   <fctr>  <chr>  <chr>         <dbl>         <dbl>    <chr>    <chr>
    ## 1  GATA3   BRCA     OV 1.111768e-177 3.335304e-177  < 2e-16     ****
    ## 2  GATA3   BRCA   LUSC  6.684016e-73  1.336803e-72  < 2e-16     ****
    ## 3  GATA3     OV   LUSC  2.965702e-08  2.965702e-08  3.0e-08     ****
    ## 4   PTEN   BRCA     OV  6.791940e-05  6.791940e-05  6.8e-05     ****
    ## 5   PTEN   BRCA   LUSC  1.042830e-16  3.128489e-16  < 2e-16     ****
    ## 6   PTEN     OV   LUSC  1.280576e-07  2.561153e-07  1.3e-07     ****
    ## 7   XBP1   BRCA     OV 2.551228e-123 7.653685e-123  < 2e-16     ****
    ## 8   XBP1   BRCA   LUSC  1.950162e-42  3.900324e-42  < 2e-16     ****
    ## 9   XBP1     OV   LUSC  4.239570e-11  4.239570e-11  4.2e-11     ****
    ## # ... with 1 more variables: method <chr>

    更多boxplot参数

    label.select.criteria <- list(criteria = "`y` > 3.9 & `x` %in% c('BRCA', 'OV')")
    ggboxplot(expr, x = "dataset",
             y = c("GATA3", "PTEN", "XBP1"),
             combine = TRUE,
             color = "dataset", palette = "jco",
             ylab = "Expression",
             label = "bcr_patient_barcode",              # column containing point labels
             label.select = label.select.criteria,       # Select some labels to display
             font.label = list(size = 9, face = "italic"), # label font
             repel = TRUE                                # Avoid label text overplotting
             )

    img

    其中 combine = TRUE 会把多个boxplot并排画在一起,其实没有ggplot自带的分面好用。

    还可以使用 merge = TRUE or merge = “asis” or merge = "flip" 来把多个boxplot 合并,效果不一样。

    还有翻转,如下:

    ggboxplot(expr, x = "dataset", y = "GATA3",
             title = "GATA3", ylab = "Expression",
             color = "dataset", palette = "jco",
             rotate = TRUE)

    img

    更多可视化详见: http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/77-facilitating-exploratory-data-visualization-application-to-tcga-genomic-data/

    指定任意基因从任意癌症里面获取测序表达数据

    还是同样的3种癌症和5个基因做示范,这个时候的基因ID稍微有点麻烦,不仅仅是要symbol还要entrez的ID,具体需要看 https://wiki.nci.nih.gov/display/TCGA/RNASeq+Version+2 的解释

    如下:

    library(RTCGA)
    library(RTCGA.rnaseq)
    expr <- expressionsTCGA(BRCA.rnaseq, OV.rnaseq, LUSC.rnaseq,
                           extract.cols = c("GATA3|2625", "PTEN|5728", "XBP1|7494","ESR1|2099", "MUC1|4582"))
    expr
    ## # A tibble: 2,071 x 7
    ##             bcr_patient_barcode     dataset `GATA3|2625` `PTEN|5728`
    ##                           <chr>       <chr>        <dbl>       <dbl>
    ##  1 TCGA-3C-AAAU-01A-11R-A41B-07 BRCA.rnaseq   14337.4623    1724.328
    ##  2 TCGA-3C-AALI-01A-11R-A41B-07 BRCA.rnaseq    7437.7379    1106.580
    ##  3 TCGA-3C-AALJ-01A-31R-A41B-07 BRCA.rnaseq   10252.9465    1478.695
    ##  4 TCGA-3C-AALK-01A-11R-A41B-07 BRCA.rnaseq    8761.6880    1877.120
    ##  5 TCGA-4H-AAAK-01A-12R-A41B-07 BRCA.rnaseq   14068.5106    1739.574
    ##  6 TCGA-5L-AAT0-01A-12R-A41B-07 BRCA.rnaseq   16511.5120    1596.715
    ##  7 TCGA-5L-AAT1-01A-12R-A41B-07 BRCA.rnaseq    6721.2714    1374.083
    ##  8 TCGA-5T-A9QA-01A-11R-A41B-07 BRCA.rnaseq   13485.3556    2181.485
    ##  9 TCGA-A1-A0SB-01A-11R-A144-07 BRCA.rnaseq     601.4191    2529.114
    ## 10 TCGA-A1-A0SD-01A-11R-A115-07 BRCA.rnaseq   12982.8798    1875.775
    ## # ... with 2,061 more rows, and 3 more variables: `XBP1|7494` <dbl>,
    ## #   `ESR1|2099` <dbl>, `MUC1|4582` <dbl>
    nb_samples <- table(expr$dataset)
    nb_samples
    ## 
    ## BRCA.rnaseq LUSC.rnaseq   OV.rnaseq
    ##        1212         552         307
    library(ggpubr)
    # ESR1|2099
    ggboxplot(expr, x = "dataset", y = "`PTEN|5728`",
             title = "ESR1|2099", ylab = "Expression",
             color = "dataset", palette = "jco")

    img

    更多可视化见:http://rtcga.github.io/RTCGA/articles/Visualizations.html

    用全部的rnaseq的表达数据来做主成分分析

    ## RNASeq expressions
    library(RTCGA.rnaseq)
    library(dplyr)  
    ## 
    ## Attaching package: 'dplyr'
    ## The following objects are masked from 'package:stats':
    ##
    ##     filter, lag
    ## The following objects are masked from 'package:base':
    ##
    ##     intersect, setdiff, setequal, union
    expressionsTCGA(BRCA.rnaseq, OV.rnaseq, HNSC.rnaseq) %>%
      dplyr::rename(cohort = dataset) %>%  
      filter(substr(bcr_patient_barcode, 14, 15) == "01") -> BRCA.OV.HNSC.rnaseq.cancer
    pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort") -> pca_plot
    plot(pca_plot)

    img

    因为是全部的表达数据,所以非常耗时,但是可以很明显看到乳腺癌和卵巢癌关系要近一点,头颈癌症就要远一点。

    用5个基因在3个癌症的表达量做主成分分析

    expr %>%  
      filter(substr(bcr_patient_barcode, 14, 15) == "01") -> rnaseq.5genes.3cancers
    DT::datatable(rnaseq.5genes.3cancers)
    #pcaTCGA(rnaseq.5genes.3cancers, "dataset") -> pca_plot
    #plot(pca_plot)

    该包里面的pcaTCGA函数不好用,其实可以自己做PCA分析。

    用突变数据做生存分析

    library(RTCGA.mutations)
    # library(dplyr) if did not load at start
    library(survminer)
    mutationsTCGA(BRCA.mutations, OV.mutations) %>%
      filter(Hugo_Symbol == 'TP53') %>%
      filter(substr(bcr_patient_barcode, 14, 15) ==
      "01") %>% # cancer tissue
      mutate(bcr_patient_barcode =
      substr(bcr_patient_barcode, 1, 12)) ->
     BRCA_OV.mutations
    library(RTCGA.clinical)
    survivalTCGA(
     BRCA.clinical,
     OV.clinical,
     extract.cols = "admin.disease_code"
     ) %>%
      dplyr::rename(disease = admin.disease_code) ->
     BRCA_OV.clinical
    BRCA_OV.clinical %>%
      left_join(
        BRCA_OV.mutations,
        by = "bcr_patient_barcode"
        ) %>%
      mutate(TP53 =
      ifelse(!is.na(Variant_Classification), "Mut","WILDorNOINFO")) ->
     BRCA_OV.clinical_mutations
    BRCA_OV.clinical_mutations %>%
    select(times, patient.vital_status, disease, TP53) -> BRCA_OV.2plot
    kmTCGA(
     BRCA_OV.2plot,
     explanatory.names = c("TP53", "disease"),
     break.time.by = 400,
     xlim = c(0,2000),
     pval = TRUE) -> km_plot
    ## Scale for 'colour' is already present. Adding another scale for
    ## 'colour', which will replace the existing scale.
    ## Scale for 'fill' is already present. Adding another scale for 'fill',
    ## which will replace the existing scale.
    print(km_plot)

    img

    多个基因在多种癌症的表达量热图

    library(RTCGA.rnaseq)
    # perfrom plot
    # library(dplyr) if did not load at start
    expressionsTCGA(
     ACC.rnaseq,
     BLCA.rnaseq,
     BRCA.rnaseq,
     OV.rnaseq,
     extract.cols =
       c("MET|4233",
       "ZNF500|26048",
       "ZNF501|115560")
     ) %>%
     dplyr::rename(cohort = dataset,
     MET = `MET|4233`) %>%
     #cancer samples
     filter(substr(bcr_patient_barcode, 14, 15) ==
     "01") %>%
     mutate(MET = cut(MET,
      round(quantile(MET, probs = seq(0,1,0.25)), -2),
      include.lowest = TRUE,
      dig.lab = 5)) -> ACC_BLCA_BRCA_OV.rnaseq
    ACC_BLCA_BRCA_OV.rnaseq %>%
     select(-bcr_patient_barcode) %>%
     group_by(cohort, MET) %>%
     summarise_each(funs(median)) %>%
     mutate(ZNF500 = round(`ZNF500|26048`),
     ZNF501 = round(`ZNF501|115560`)) ->
     ACC_BLCA_BRCA_OV.rnaseq.medians
    ## `summarise_each()` is deprecated.
    ## Use `summarise_all()`, `summarise_at()` or `summarise_if()` instead.
    ## To map `funs` over all variables, use `summarise_all()`
    heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq.medians,
     "cohort", "MET", "ZNF500",
     title = "Heatmap of ZNF500 expression")

  • 相关阅读:
    理解javascript作用域及hosting机制
    angular分页指令
    python 设计模式之门面模式
    代码Rework中的反思
    python 设计模式之观察者模式
    python 设计模式之命令模式
    Django性能调优
    python 设计模式之MVC模式
    httperf+autobench测试web应用
    对工作的感悟
  • 原文地址:https://www.cnblogs.com/nkwy2012/p/9252144.html
Copyright © 2011-2022 走看看