zoukankan      html  css  js  c++  java
  • 排序算法

    一、排序算法介绍

    排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程。

    排序的分类:

    内部排序:
    ➢指将需要处理的所有数据都加载到内部存储器中进行排序。

    外部排序法:
    ➢数据量过大,无法全部加载到内存中,需要借助外部存储进行排序。

    二、算法的时间复杂度

    度量一个程序执行时间的两种方法

    事后统计的方法

    ●这种方法可行,但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快

    事前估算的方法

    ●通过分析某个算法的时间复杂度来判断哪个算法更优

    三、算法的时间复杂度

    1.时间频度

    基本介绍

    时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

    使用说明

    忽略常数项
    忽略低次项

    2.时间复杂度

    ●一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用【T(n)】表示,若有某个辅助函数【f(n)】,使得当n趋近于无穷大时,【T(n) / f(n)】的极限值为不等于零的常数,则称【f(n)】是【T(n)】的同数量级函数。记作【T(n)=O(f(n)】,称【O(f(n))】为算法的渐进时间复杂度,简称时间复杂度。

    ●【T(n)】不同,但时间复杂度可能相同。如: 【T(n)=n2+7n+6】 与 【T(n)=3n2+2n+2】它们的【T(n)】不同,但时间复杂度相同,都为【O(n2)】。

    ●计算时间复杂度的方法:

    ➢用常数1代替运行时间中的所有加法常数
    ➢修改后的运行次数函数中,只保留最高阶项
    ➢去除最高阶项的系数

    3.常见的时间复杂度

    ➢常数阶O(1)
    ➢对数阶O(log2 n)
    ➢线性阶O(n)
    ➢线性对数阶O(nlog2n)
    ➢平方阶O(n^2)
    ➢立方阶O(n^3)
    ➢k次方阶O(n^k)
    ➢指数阶O(2^n)
    ➢阶乘阶O(n!)

    4.平均时间复杂度和最坏时间复杂度

    ➢平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
    ➢最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。
    ➢平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图:)。

    相关术语解释:

    稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
    不稳定: 如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
    内排序: 所有排序操作都在内存中完成;
    外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
    时间复杂度: 一个算法执行所耗费的时间。
    空间复杂度:运行完一个程序所需内存的大小。
    n:数据规模
    k:"桶”的个数
    In-place: 不占用额外内存
    Out-place: 占用额外内存

    四、算法的空间复杂度

    ●类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。

    ●空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况

    ●在做算法分析时,主要讨论的是时间复杂度从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间.

    冒泡排序

    冒泡排序介绍

    ●冒泡排序(Bubble Sorting) 的基本思想是:通过对待排序序列从前向后(从下标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就象水底下的气泡一样逐渐向上冒

    ●因为排序的过程中,各元素不断接近自己的位置,如果一趟比较下来没有进行过交换,就说明序列有序,因此要在排序过程中设置一个标志flag判断元素是否进行过交换。从而减少不必要的比较。

    冒泡排序及优化

    package com.xudong.DataStructures;
    
    import java.text.SimpleDateFormat;
    import java.util.Date;
    
    public class BubbleSortDemo {
        public static void main(String[] args) {
            //int arr[] = {3,9,-1,10,-2};
    
            //创建80000个随机数的数组
            int[] arr = new int[80000];
            for (int i = 0; i < 80000; i++) {
                arr[i] = (int) (Math.random() * 8888888);//生成一个[0,8888888)的随机数
            }
    
            //测试时间
            Date date1 = new Date();
            SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
            String date1Str = simpleDateFormat.format(date1);
            System.out.println("排序前的时间是:" + date1Str);
    
            Bubblesort(arr);
    
            Date date2 = new Date();
            String date2Str = simpleDateFormat.format(date2);
            System.out.println("排序后的时间是:" + date2Str);
            //System.out.println(Arrays.toString(arr));
        }
    
        public static void Bubblesort(int[] arr){
            //第一趟排序,就是将最大的数排在最后
            int temp = 0;
            boolean flag = false;//标识变量,表示是否进行过交换
            for (int i = 0; i < arr.length - 1; i++) {
                for (int j = 0; j < arr.length - 1; j++) {
                    //如果前面的数比后面的数大,则交换
                    if (arr[j] > arr[j + 1]){
                        flag = true;
                        temp = arr[j];
                        arr[j] = arr[j + 1];
                        arr[j + 1] = temp;
                    }
                }
    //            System.out.println("第" + (i + 1) +"趟排序后的数组:");
    //            System.out.println(Arrays.toString(arr));
                //算法优化
                if (!flag){//在一趟排序中,一次交换都没有发生过
                    break;
                }else {
                    flag = false;//重置flag,进行下次判断
                }
            }
        }
    }
    

    选择排序

    1.基本介绍

    ●选择式排序也属于内部排序法,是从欲排序的数据中,按指定的规财选出某一元素,再依规定交换位置后达到排序的目的。
    选择排序要比冒泡排序快。

    2.选择排序思想:

    ●选择排序(select sorting) 也是一种简单的排序方法。它的基本思想是:第一次从arr[0] ~ arr[n-1]中选取最小值,与arr[0]交换, 第二次从arr[1] ~ arr[n-1]中选取最小值,与arr[1]交换, 第三次从arr[2] ~ arr[n-1]中选取最小值,与arr[2]交换,...,第i次从arr[i-1] ~ arr[n-1]中选取最小值,与arr[i-1]交换,... ,第n-1次从arr[n-2] ~ arr[n-1]中选取最小值,与arr[n-2]交换,总共通过n-1次,得到一个按排序码从小到大排列的有序序列。

    package com.xudong.DataStructures;
    
    import java.util.Arrays;
    
    public class SelectSortDemo {
        public static void main(String[] args) {
            int[] arr = {101,34,119,1};
            selectSort(arr);
        }
    
        public static void selectSort(int[] arr){
            for (int i = 0; i < arr.length - 1; i++) {
                int minIndex = i;
                int min = arr[i];
                for (int j = i + 1; j < arr.length; j++) {
                    if (min > arr[j]){//假定的最小值并不是最小。升序降序改这里符号
                        min = arr[j];//重置min
                        minIndex = j;//重置minIndex
                    }
                }
                //将最小值放在arr[i],即交换
                if (minIndex != i){//优化
                    arr[minIndex] = arr[i];
                    arr[i] = min;
                }
                System.out.println("第" + (i + 1) + "轮后:");
                System.out.println(Arrays.toString(arr));
            }
        }
    }
    

    插入排序

    ●插入式排序属于内部排序法,是对于欲排序的元素以插入的方式找寻该元素的适当位置,以达到排序的目的。
    插入排序效率稍比选择排序低

    插入排序法思想:

    ●插入排序(Insertion Sorting)的基本思想是:把n个待排序的元素看成为一个有序表和一个无序表,开始时有序表中只包含一个元素,无序表中包含有n-1个元素,排序过程中每次从无序表中取出第一个元素,把它的排序码依次与有序表元素的排序码进行比较,将它插入到有序表中的适当位置,使之成为新的有序表。

    package com.xudong.DataStructures;
    
    import java.util.Arrays;
    
    public class InsertSortDemo {
        public static void main(String[] args) {
            int[] arr = {101,34,119,1,-1,89};
            intsertSort(arr);
        }
    
        public static void intsertSort(int[] arr){
            for (int i = 1; i < arr.length; i++) {
                //定义待插入的数
                int insertVal = arr[i];
                int insertIndex = i - 1;//即arr[i]前面这个数的下标
    
                while (insertIndex >= 0 && insertVal < arr[insertIndex]){//升序降序改这里符号
                    arr[insertIndex + 1] = arr[insertIndex];
                    insertIndex--;
                }
                if (insertIndex + 1 != i){
                    //当退出while循环时,说明插入的位置找到,insertIndex + 1
                    arr[insertIndex + 1] = insertVal;
                }
    
                System.out.println("第" + i + "轮插入:");
                System.out.println(Arrays.toString(arr));
    
            }
        }
    }
    

    希尔排序

    ●希尔排序是希尔(Donald Shell)于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序

    希尔排序法基本思想

    ●希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止

    package com.xudong.DataStructures;
    
    import java.util.Arrays;
    
    public class ShellSortDemo {
        public static void main(String[] args) {
            int[] arr = {8,9,1,7,2,3,5,4,6,0};
            shellSort2(arr);
        }
    
        //插入时采用交换法,效率慢,与冒泡差不多
        public static void shellSort(int[] arr){
            int temp;
            int count = 0;
            for (int gap = arr.length / 2; gap > 0; gap /= 2) {
                for (int i = 0; i < arr.length; i++) {
                    //遍历各组中所有的元素。共gap组,步长gap
                    for (int j = i - gap; j >= 0 ; j -= gap) {
                        //如果当前元素大于加上步长后的那个元素,说明交换
                        if (arr[j] > arr[j + gap]){
                            temp = arr[j];
                            arr[j] = arr[j + gap];
                            arr[j + gap] = temp;
                        }
                    }
                }
                System.out.println("希尔排序第" + (++count) + "轮=" + Arrays.toString(arr));
            }
        }
    
        //插入时采用移位法:效率比插入排序高
        public static void shellSort2(int[] arr){
            int temp;
            int count = 0;
            //增量gap,并逐步缩小增量
            for (int gap = arr.length / 2; gap > 0; gap /= 2){
                //从第gap个元素,逐个对其所在的组进行直接插入排序
                for (int i = gap; i < arr.length; i++) {
                    int j = i;
                    temp = arr[j];
                    if (arr[j] < arr[j - gap]){
                        while (j - gap >= 0 && temp < arr[j - gap]){
                            //移动
                            arr[j] = arr[j - gap];
                            j -= gap;
                        }
                        //当退出while后,temp就找到了插入的位置
                        arr[j] = temp;
                    }
                }
                System.out.println("希尔排序第" + (++count) + "轮=" + Arrays.toString(arr));
            }
        }
    }
    

    快速排序

    快速排序(Quicksort)是对冒泡排序的一种改进
    快速排序稍比希尔排序快。

    快速排序法基本思想

    基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列.

    package com.xudong.DataStructures;
    
    import java.util.Arrays;
    
    public class QuickSortDemo {
        public static void main(String[] args) {
            int[] arr = {-9,78,0,23,-567,70};
            quickSort(arr,0,arr.length - 1);
            System.out.println("arr = " + Arrays.toString(arr));
        }
    
        public static void quickSort(int[] arr,int left,int right){
            int l = left;//左下标
            int r = right;//右下标
            int pivot = arr[(left + right) / 2];//pivot中轴值
            int temp;
            //让比pivot值小的放左边,比pivot值大的放右边
            while (l < r){
                //在pivot的左边一直找,找到大于等于pivot值,才退出
                while (arr[l] < pivot){
                    l += 1;
                }
                //在pivot的右边一直找,找到小于等于pivot值,才退出
                while (arr[r] > pivot){
                    r -= 1;
                }
                if (l >= r){//左边全小于等于pivot,右边全大于pivot
                    break;
                }
                //交换
                temp = arr[l];
                arr[l] = arr[r];
                arr[r] = temp;
                //如果交换完后,arr[l] == pivot值,r--,后移
                if (arr[l] == pivot){
                    r -= 1;
                }
                //如果交换完后,arr[r] == pivot值,l++,后移
                if (arr[r] == pivot){
                    l += 1;
                }
            }
            //如果 l == r ,则 l++,r--,否则会栈溢出
            if (l == r){
                l += 1;
                r -= 1;
            }
            //向左递归
            if (left < r){
                quickSort(arr,left,r);
            }
            //向右递归
            if (right > l){
                quickSort(arr,l,right);
            }
        }
    }
    

    归并排序

    与快速排序的效率差不多。
    归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案”修补”在一起,即分而治之)。

    说明:
    ●可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。分阶段可以理解为就是递归拆分子序列的过程。

    package com.xudong.DataStructures;
    
    import java.util.Arrays;
    
    public class MergeSortDemo {
        public static void main(String[] args) {
            int arr[] = {8,4,5,7,1,3,6,2};
            int temp[] = new int[arr.length];
            mergeSort(arr,0,arr.length -1,temp);//归并arr.length-1次
    
            System.out.println("归并排序后:" + Arrays.toString(arr));
        }
    
        //分+合算法
        public static void mergeSort(int[] arr,int left,int right,int[] temp){
            if (left < right){
                int mid = (left + right) / 2;
                //向左递归分解
                mergeSort(arr,left,mid,temp);
                //向右递归分解
                mergeSort(arr,mid + 1,right,temp);
                //合并
                merge(arr,left,mid,right,temp);
            }
        }
    
        //合并的方法
        /**
         * @param arr 排序的原始数组
         * @param left 左边有序序列的初始索引
         * @param mid 中间索引
         * @param right 右边索引
         * @param temp 做中转的数组
         */
        public static void merge(int[] arr,int left,int mid,int right,int[] temp){
            int i = left;
            int j = mid + 1;
            int t = 0;
            //(一)先把左右两边(有序)的数据按照规则填充到temp数组
            //直到左右两边的有序序列有一边处理完为止
            while (i <= mid && j <= right){
                //如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
                //那么将左边的当前元素拷贝到temp数组
                if (arr[i] <= arr[j]){
                    temp[t] = arr[i];
                    t += 1;
                    i += 1;
                }else {//反之,将右边有序序列的当前元素填充到temp数组
                    temp[t] = arr[j];
                    t += 1;
                    j += 1;
                }
            }
            //(二)把剩余一边的数据依次全部填充到temp
            while (i <= mid){
                temp[t] = arr[i];
                t += 1;
                i += 1;
            }
            while (j <= right){
                temp[t] = arr[j];
                t += 1;
                j += 1;
            }
            //(三)将temp数组的元素拷贝到arr。并不是拷贝所有
            t = 0;
            int tempLeft = left;
            while (tempLeft <= right){
                arr[tempLeft] = temp[t];
                t += 1;
                tempLeft += 1;
            }
        }
    }
    

    基数排序

    基数排序(桶排序)介绍:

    基数排序(radixsort) 属于“分配式排序”(distributionsort),又称“桶子法”(bucket sort)或binsort,顾名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用
    基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法
    ●基数排序(Radix Sort)是桶排序的扩展
    ●基数排序是1887年赫尔曼何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个位数分别比较。

    基数排序的说明:

    ●基数排序是对传统桶排序的扩展,速度很快.
    ●基数排序是经典的空间换时间的方式,占用内存很大,当对海量数据排序时,容易造成OutOfMemoryError
    基数排序时稳定的
    。[注:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j], 且r[i]在r[j]之前, 而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的]
    ●有负数的数组,我们不适用基数排序来进行排序。

    基数排序基本思想

    ●将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。


    package com.xudong;
    
    import java.util.Arrays;
    
    public class RadixSortDemo {
        public static void main(String[] args) {
            int arr[] = {53,3,542,748,14,214};
            radixSort(arr);
        }
    
        //基数排序
        public static void radixSort(int[] arr){
    
            //得到数组中最大的数的位数
            int max = arr[0];
            for (int i = 1; i < arr.length; i++) {
                if (arr[i] > max){
                    max = arr[i];
                }
            }
            //得到最大位数是几位数
            int maxLength = (max + "").length();
    
            //定义一个二维数组,表示十个桶,每个桶就是一个数组
            int[][] bucket = new int[10][arr.length];
            //为了记录每个桶中,实际存放了多少个数据,这里定义一个一维数组记录各个桶每次放入数据的个数
            int[] bucketElementCounts = new int[10];
    
    
            for (int i = 0 , n = 1; i < maxLength; i++,n *= 10) {
                //针对每个元素的对应的位数进行排序处理。个十百千
                for (int j = 0; j < arr.length; j++) {
                    //取出每个元素的对应位的值
                    int digitOfElement = arr[j] / n % 10;
                    //放到对应的桶中
                    bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
                    bucketElementCounts[digitOfElement]++;
                }
                //按照桶的顺序(一维数组的下标依次取出数据,放入原来数组)
                int index = 0;
                //遍历每一个桶,并将桶中的数据放入到原数组
                for (int k = 0; k < bucketElementCounts.length; k++) {
                    if (bucketElementCounts[k] != 0){//如果桶中有数据
                        //循环该桶即,即第k个桶,放入数据
                        for (int l = 0; l < bucketElementCounts[k]; l++) {
                            arr[index++] = bucket[k][l];
                        }
                    }
                    //每轮处理后,须将桶清空
                    bucketElementCounts[k] = 0;
                }
                System.out.println("第" + (i + 1) + "轮,排序处理的结果:" + Arrays.toString(arr));
            }
        }
    }
    

    堆排序

    堆排序基本介绍(参考后面的文章:树)

    ●堆排序是利用这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序
    ●堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆,注意:没有要求结点的左孩子的值和右孩子的值的大小关系。
    每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆


    ●一般升序采用大顶堆,降序采用小顶堆

    堆排序基本思想

    ●将待排序序列构造成一个大顶堆 => 数组
    ●此时,整个序列的最大值就是堆顶的根节点。
    ●将其与末尾元素进行交换,此时末尾就为最大值。
    ●然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
    可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了.

    package com.xudong.DataStructures;
    
    import java.util.Arrays;
    
    public class HeapSortDemo {
        public static void main(String[] args) {
            int arr[] = {4,6,8,5,9};
            heapSort(arr);
        }
    
        //堆排序的方法
        public static void heapSort(int arr[]){
            int temp = 0;
            //将无序序列构建成一个堆,根据升序降序要求选择大顶堆或小顶堆
            for (int i = arr.length/2 - 1; i >= 0 ; i--) {
                adjustHeap(arr,i,arr.length);
            }
            //将其与末尾元素进行交换,此时末尾就为最大值。
            //然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列
            for (int j = arr.length - 1; j > 0 ; j--) {
                temp = arr[j];
                arr[j] = arr[0];
                adjustHeap(arr,0,j);
            }
            System.out.println("数组:" + Arrays.toString(arr));
        }
    
    
        //将一个数组(二叉树)调整成一个大顶堆
        /**
         * @功能 将以i对应的非子节点的树调整成大顶堆
         * @param arr 待调整的数组
         * @param i 表示非叶子结点在数组中的索引
         * @param length 表示对多少个元素进行调整
         */
        public static void adjustHeap(int arr[],int i,int length){
            //取出当前元素的值,保存到临时变量
            int temp = arr[i];
            for (int k = i * 2 + 1;k < length;k = k * 2 + 1){
                if (k + 1 < length && arr[k] < arr[k + 1]){//左子节点的值小于右子节点的值
                    k++;//k指向右子节点
                }
                if (arr[k] > temp){//如果子节点大于父节点
                    arr[i] = arr[k];//将较大值赋给当前节点
                    i = k;// i 指向 k 进行循环比较
                }else {
                    break;
                }
            }
            //将i为父节点的树的最大值,放在了最顶(局部)
            arr[i] = temp;//将temp值放到调整后的位置
        }
    }
    
  • 相关阅读:
    js交互数据
    js字符串操作
    js数组操作
    hasattr ,setarrt, getattr属性
    装饰器
    redis数据库安装
    ubuntu中mysql数据库安装与删除
    装换器
    jinjia2
    Laravel框架与ThinkPHP框架的不同
  • 原文地址:https://www.cnblogs.com/nnadd/p/13419867.html
Copyright © 2011-2022 走看看