zoukankan      html  css  js  c++  java
  • POJ

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 68466   Accepted: 31752
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    题目链接:

    http://poj.org/problem?id=3264

    题目大意:

    给定一个区间N,并初始化该区间,Q次询问区间内的最大值减最小值。

    题目分析:

    这是一道基础入门级的线段树题目。线段树是二分的思想。开结构体存储节点的左、右区间和最大、最小值。根节点的左区间是1,右区间是N。

    父节点分成左孩子和右孩子,即左孩子的区间为父节点的左区间到父节点的中值((l+r)/2),右孩子的区间为父节点的中值加一((l+r)/2+1)到父节点的右区间。

    AC代码如下:

    #include<stdio.h>
    #include<algorithm>
    using namespace std;
    const int MAX=1E6+10;
    
    struct s{
        int left,right;
        int maxx,minn;
    }tree[MAX<<2];
    
    void btree(int k,int l,int r)    //建树 
    {
        tree[k].left=l;    //节点左右区间更新 
        tree[k].right=r;
        if(l==r)    //叶子 
        {
            scanf("%d",&tree[k].minn);
            tree[k].maxx=tree[k].minn;
            return ;
        }
        int mid=(l+r)/2;
        btree(k<<1,l,mid);   //左孩子 
        btree(k<<1|1,mid+1,r);   //右孩子 
        tree[k].maxx=max(tree[k<<1].maxx,tree[k<<1|1].maxx);   //更新节点最大值 
        tree[k].minn=min(tree[k<<1].minn,tree[k<<1|1].minn);   //更新节点最小值 
    }
    
    int ma,mi;
    void query(int k,int l,int r)    //询问 
    {
        if(tree[k].left>=l&&tree[k].right<=r)
        {
            ma=max(tree[k].maxx,ma);
            mi=min(tree[k].minn,mi);
            return ;
        }
        int mid=(tree[k].left+tree[k].right)/2;
        if(mid>=r)    //节点中值大于询问区间右边  询问左孩子 
        {
            query(k<<1,l,r);
        }
        else if(mid<l)    //节点中值小于询问左边   询问右孩子 
        {
            query(k<<1|1,l,r);
        }
        else     //左、右都需要询问 
        {
            query(k<<1,l,r);
            query(k<<1|1,l,r);
        }
        return ;
    }
    
    int main()
    {
        int n,q;
        scanf("%d%d",&n,&q);
        btree(1,1,n);
        for(int i=1;i<=q;i++)
        {
            ma=-1;mi=0x3f3f3f3f;
            int a,b;
            scanf("%d%d",&a,&b);
            query(1,a,b);
            printf("%d
    ",ma-mi);
        }
        return 0;
    }
    
    
  • 相关阅读:
    创建表空间tablespace,删除
    oracle表分区的,分区操作,分区查询,子分区查询
    oracle表分区创建
    git代码提交步骤,教程
    Spring整合Quartz实现动态定时器,相关api,定时器添加,删除,修改
    spring + quartz定时任务,以及修改定时任务
    oracle表分区详解
    Navicat for Oracle 绿色版 连接 Oracle 12c
    spring 整合maven 定时任务调度,多个任务写法
    Unity3D 之UGUI制小地图
  • 原文地址:https://www.cnblogs.com/noback-go/p/10541706.html
Copyright © 2011-2022 走看看