zoukankan      html  css  js  c++  java
  • 【POJ】2115 C Looooops(扩欧)

    Description

    A Compiler Mystery: We are given a C-language style for loop of type 
    for (variable = A; variable != B; variable += C)
    
    statement;

    I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k

    Input

    The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 

    The input is finished by a line containing four zeros. 

    Output

    The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

    Sample Input

    3 3 2 16
    3 7 2 16
    7 3 2 16
    3 4 2 16
    0 0 0 0
    

    Sample Output

    0
    2
    32766
    FOREVER

    --------------------------------------------------------------------------
    题意:在一个k位的机器里(大于2^k就回到0),进行每次增加c的循环,循环终止条件是!=b求循环何时终止。
    分析:裸的扩欧。方程:c*x + 2^k*y = b-a 。

     1 #include <cstdio>
     2 typedef long long LL;
     3 LL exgcd(LL a,LL b,LL &x,LL &y)
     4 {
     5     int d;
     6     if(b==0)
     7     {
     8         x=1;y=0;return a;
     9     }
    10     else
    11     {
    12         d=exgcd(b,a%b,y,x);y-=x*(a/b);
    13     }
    14     return d;
    15 }
    16 int main()
    17 {
    18     LL a,b,c,k;
    19     while(scanf("%lld%lld%lld%lld",&a,&b,&c,&k)&&(a||b||c||k))
    20     {
    21         
    22         LL i=b-a,x=0,y=0,d=0,p=1LL<<k;//不加LL会爆 
    23         //方程:c*x + 2^k*y = b-a 
    24         d=exgcd(c,p,x,y);
    25         if(i%d!=0) 
    26         {
    27             printf("FOREVER
    ");
    28             continue;
    29         }
    30         p/=d;
    31         x%=p;
    32         x*=(i/d)%p;//把倍数乘上
    33         x=(x%p+p)%p;
    34         printf("%lld
    ",x);
    35     }
    36     return 0;
    37 }
  • 相关阅读:
    小艾电台-小众音乐科普讲座
    永乐计分器
    顺金斗花牌-比大小
    Bigger_0305
    iTunes Connect后台无法创建App的解决方案
    iOS navigationBar导航栏底部与self.view的分界线的隐藏
    iOS 十六进制的相加取反
    UITabBar-UITabBarItem图片的背景颜色属性和文字的颜色大小设置
    iOS GCD多线程介绍
    [POJ3461] Oulipo
  • 原文地址:https://www.cnblogs.com/noblex/p/7533493.html
Copyright © 2011-2022 走看看