zoukankan      html  css  js  c++  java
  • 【POJ】3090 Visible Lattice Points(欧拉函数)

    Visible Lattice Points
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 7705   Accepted: 4707

    Description

    A lattice point (xy) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (xy) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (xy) with 0 ≤ xy ≤ 5 with lines from the origin to the visible points.

    Write a program which, given a value for the size, N, computes the number of visible points (xy) with 0 ≤ xy ≤ N.

    Input

    The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.

    Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.

    Output

    For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.

    Sample Input

    4
    2
    4
    5
    231

    Sample Output

    1 2 5
    2 4 13
    3 5 21
    4 231 32549
    -----------------------------------------------------------------

    分析:和[SDOI2008]仪仗队没有什么区别,只是加了个多数据。
    [SDOI2008]仪仗队 -》 http://www.cnblogs.com/noblex/p/7535245.html
    还是放一下代码吧
     1 #include <cstdio>
     2 #include <cmath>
     3 const int maxn=1005;
     4 int phi[maxn];
     5 int phis(int n)
     6 {
     7     for(int i=2;i<=n;i++) phi[i]=0;
     8     for(int i=2;i<=n;i++)
     9     {
    10         if(!phi[i])
    11         for(int j=i;j<=n;j+=i)
    12         {
    13             if(!phi[j]) phi[j]=j;
    14             phi[j]=phi[j]/i*(i-1);
    15         }
    16     }
    17     return 0;
    18 }
    19 int main()
    20 {
    21     int t,n;
    22     scanf("%d",&t);
    23     phis(maxn);
    24     for(int i=1;i<=t;i++)
    25     {
    26         long long sum=0;
    27         scanf("%d",&n);
    28         for(int j=2;j<=n;j++) sum+=phi[j];
    29         sum*=2;sum+=3;
    30         printf("%d %d %lld
    ",i,n,sum);
    31     }
    32     return 0;
    33 }
     
  • 相关阅读:
    代码收藏系列--jquery--筛选器、事件绑定技巧
    代码收藏系列--javascript--日期函数
    代码收藏系列--javascript--移动端技巧
    DotNet,PHP,Java的数据库连接代码大全(带演示代码)
    DDoS攻击、CC攻击的攻击方式和防御方法
    CDN公共库、前端开发常用插件一览表(VendorPluginLib)
    使用Ajax内容签名,减少流量浪费
    程序开发常用第三方类库一览表(VendorLib)
    检查对象是否存在
    Python安装
  • 原文地址:https://www.cnblogs.com/noblex/p/7535258.html
Copyright © 2011-2022 走看看