zoukankan      html  css  js  c++  java
  • 使用tensorflow 构建rnn网络

    使用tensorflow实现了简单的rnn网络用来学习加法运算。
    tensorflow 版本:1.1

    import tensorflow as tf
    from tensorflow.contrib import rnn
    
    class RNN():
        def __init__(self, input_dim , hidden_dim , step_num , class_num,learning_rate):
            # # tf Graph input
            self.x = tf.placeholder("float", [None, step_num, input_dim])
            self.y = tf.placeholder("float", [None, class_num])
            # Define weights
            weights = {
                'out': tf.Variable(tf.random_normal([hidden_dim, hidden_dim])),
                'sigout':tf.Variable(tf.random_normal([hidden_dim , class_num]))
            }
            biases = {
                'out': tf.Variable(tf.random_normal([hidden_dim])),
                'sigout':tf.Variable(tf.random_normal([class_num]))
            }
            # Unstack to get a list of 'step_num' tensors of shape (batch_size, input_dim)
            x_unstack = tf.unstack(self.x, step_num, 1)
            # Define a lstm cell with tensorflow
            lstm_cell = rnn.BasicLSTMCell(hidden_dim, forget_bias=1.0)
    
            # Get lstm cell output
            outputs, states = rnn.static_rnn(lstm_cell, x_unstack, dtype=tf.float32)
    
            # Linear activation, using rnn inner loop last output
            pred = tf.matmul(outputs[-1], weights['out']) + biases['out']
            sigmodout = tf.matmul(tf.nn.sigmoid(pred , 'relu') , weights['sigout']) + biases['sigout']
            self.predict = tf.round(sigmodout)
            correct_pred = tf.equal(self.predict , self.y)
            self.accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
            cost = tf.reduce_sum(tf.abs(tf.subtract(sigmodout , self.y)))
            self.loss = cost
            tf.summary.scalar('acc' , self.accuracy)
            tf.summary.scalar('cost' , cost)
            self.merge_all = tf.summary.merge_all()
    
    
    import random
    import numpy as np
    class DataProcess():
        def __init__(self):
            self.point = 0
            self.max_integer = 10000
            self.max_len = len(self.filter(bin(self.max_integer))) + 1
        def nextBatch(self,batch_size , fake = False ,is_test = False):
            x_batch = []
            y_batch = []
            t_batch = []
            for i in range( 0 , batch_size):
                a = random.randint(0,self.max_integer)
                b = random.randint(0,self.max_integer)
                if fake:
                    a = 1
                    b = 1
                c = a + b
                abin = self.process(a)
                bbin = self.process(b)
                cbin = self.process(c)
                xa = np.array(abin)
                xb = np.array(bbin)
                x_ = np.concatenate((xa , xb),axis= 0)
                y_ = np.array(cbin)
                x_batch.append(x_.reshape(2,self.max_len))
                y_batch.append(cbin)
                if is_test:
                    temp = []
                    temp.append(a)
                    temp.append(b)
                    t_batch.append(temp)
            # if not is_test:
            return np.array(x_batch) , np.array(y_batch),np.array(t_batch)
            # else:
            #     return np.array(x_batch) , np.array(y_batch)
    
        def process(self , str):
            bstr = bin(str)
            bstr = self.filter(bstr)
            bstr = self.completion(bstr)
            return bstr[::-1]
    
        def filter(self , bstr):
            return bstr.replace('0b' , '')
    
        def completion(self , bstr):
            lst = []
            for num in list(bstr):
                lst.append(int(num))
            length = len(bstr)
            for i in range(length , self.max_len):
                lst.insert(0,0)
    
            return[ (float)(i) for i in lst]
    
    import tensorflow as tf
    import time
    import os
    from src.bitplus.Process import DataProcess
    from src.bitplus.rnn import RNN
    
    dp = DataProcess()
    tf.app.flags.DEFINE_float("learning_rate",0.01,'learning rate')
    tf.app.flags.DEFINE_integer("training_iters",500000,'')
    tf.app.flags.DEFINE_integer("batch_size",100,'')
    tf.app.flags.DEFINE_integer("display_step",10,'')
    tf.app.flags.DEFINE_integer("input_dim" , 2,'')
    tf.app.flags.DEFINE_integer("steps_num" , dp.max_len,'')
    tf.app.flags.DEFINE_integer("hidden_dim", dp.max_len * 2 ,'')
    tf.app.flags.DEFINE_integer("class_num" , dp.max_len,'')
    tf.app.flags.DEFINE_string("rnn_model",'rnn.model','')
    FLAGS = tf.app.flags.FLAGS
    
    logfolder = time.strftime("%Y%m%d_%H%M%S", time.localtime())
    
    
    def train():
        rnn = RNN(FLAGS.input_dim , FLAGS.hidden_dim ,FLAGS.steps_num , FLAGS.class_num , FLAGS.learning_rate)
        optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate).minimize(rnn.loss)
        init = tf.global_variables_initializer()
        sess = tf.Session()
        sess.run(init)
        train_writer = tf.summary.FileWriter('../LOGS/'+logfolder,sess.graph)
        step = 1
        while step  * FLAGS.batch_size < FLAGS.training_iters:
            batch_x, batch_y ,_= dp.nextBatch(FLAGS.batch_size , False)
            batch_x = batch_x.transpose((0, 2, 1))
            # Run optimization op (backprop)
            sess.run(optimizer, feed_dict={rnn.x: batch_x, rnn.y: batch_y})
            if step % FLAGS.display_step == 0:
                # Calculate batch loss
                merge_all , loss , acc,predict= sess.run([rnn.merge_all ,rnn.loss ,rnn.accuracy,rnn.predict],feed_dict={rnn.x: batch_x, rnn.y: batch_y})
                print("Iter " + str(step*FLAGS.batch_size) + ", Minibatch Loss= " + 
                      "{:.6f}".format(loss) + ", Training Accuracy= " + 
                      "{:.5f}".format(acc))
                train_writer.add_summary(merge_all , step)
            step += 1
    
        print("Optimization Finished!")
        train_writer.close()
        saver = tf.train.Saver(tf.all_variables())
        if not os.path.exists('model'):
            os.mkdir('model')
        saver.save(sess, './model/' + FLAGS.rnn_model)
    def tModel(model):
        rnn = RNN(FLAGS.input_dim , FLAGS.hidden_dim ,FLAGS.steps_num , FLAGS.class_num , FLAGS.learning_rate)
        saver = tf.train.Saver()
        init = tf.global_variables_initializer()
        sess = tf.Session()
        sess.run(init)
        saver.restore(sess,model)
        batch_x , batch_y , batch_test = dp.nextBatch(100 , False,True)
        batch_x = batch_x.transpose((0, 2, 1))
        predict = sess.run([rnn.predict],feed_dict={rnn.x: batch_x, rnn.y: batch_y})
    
        for ndx in range(len(predict[0])):
            print('%s + %s = %d(%d)'%(batch_test[ndx][0] , batch_test[ndx][1] , batch_test[ndx][0] + batch_test[ndx][1],bin2Ten(predict[0][ndx])))
        print('pause!')
    def bin2Ten(bin):
        lst = []
        for i in bin[::-1]:
            lst.append(str(int(i)))
        return int(''.join(lst) , base=2)
    def main(_):
        print('start...')
        print('max len:' , dp.max_len)
        # train()
        tModel('./model/' + FLAGS.rnn_model)
    if __name__ == '__main__':
        tf.app.run()
    
  • 相关阅读:
    12个非常不错的javascript类库
    CSS中单位em和rem的区别
    CSS中box-sizing属性的作用
    网页设计中的默认字体样式详解
    jQuery遍历Table表格的行和列
    css常用解决方案
    JS判断字符串小括号是否成对合法
    Less编码规范
    React九宫格抽奖
    n个有序数组,取出k个最大值
  • 原文地址:https://www.cnblogs.com/nocml/p/7080420.html
Copyright © 2011-2022 走看看