zoukankan      html  css  js  c++  java
  • Deep into MySQL QEP with optimizer_trace

    Deep into MySQL QEP with optimizer_trace

    Louis Hust

     

    0  Preface

    MySQL5.6 add a new option to show QEP more deeply-optimizer_trace. This option is very different from EXPLAIN which just showes the table access method, index using, table join order and so on. But optimizer_trace output every steps of how the Optimizer processes query, such as join prepare, join optimizer and join exec. Each of the three steps contains many substeps such as expanded_query, equality_propagation, trivial_condition_removal, etc.

     

    0  Show QEP in deep

    # Turn tracing on (it's off by default):
    SET optimizer_trace="enabled=on";
    SELECT * FROM t1 WHERE c1=1 or c1=100;# your query here
    SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE;
    # possibly more queries...
    # When done with tracing, disable it:
    SET optimizer_trace="enabled=off";
    
    
     

    An example below:

     
    {
      "steps": [
        {
          "join_preparation": {
            "select#": 1,
            "steps": [
              {
                "expanded_query": "/* select#1 */ select `t1`.`c1` AS `c1`,`t1`.`c2` AS `c2` from `t1` where ((`t1`.`c1` = 1) or (`t1`.`c1` = 100))"
              }
            ]
          }
        },
        {
          "join_optimization": {
            "select#": 1,
            "steps": [
              {
                "condition_processing": {
                  "condition": "WHERE",
                  "original_condition": "((`t1`.`c1` = 1) or (`t1`.`c1` = 100))",
                  "steps": [
                    {
                      "transformation": "equality_propagation",
                      "resulting_condition": "(multiple equal(1, `t1`.`c1`) or multiple equal(100, `t1`.`c1`))"
                    },
                    {
                      "transformation": "constant_propagation",
                      "resulting_condition": "(multiple equal(1, `t1`.`c1`) or multiple equal(100, `t1`.`c1`))"
                    },
                    {
                      "transformation": "trivial_condition_removal",
                      "resulting_condition": "(multiple equal(1, `t1`.`c1`) or multiple equal(100, `t1`.`c1`))"
                    }
                  ]
                }
              },
              {
                "table_dependencies": [
                  {
                    "table": "`t1`",
                    "row_may_be_null": false,
                    "map_bit": 0,
                    "depends_on_map_bits": [
                    ]
                  }
                ]
              },
              {
                "ref_optimizer_key_uses": [
                ]
              },
              {
                "rows_estimation": [
                  {
                    "table": "`t1`",
                    "range_analysis": {
                      "table_scan": {
                        "rows": 10157,
                        "cost": 2057.5
                      },
                      "potential_range_indices": [
                        {
                          "index": "c1",
                          "usable": true,
                          "key_parts": [
                            "c1"
                          ]
                        }
                      ],
                      "setup_range_conditions": [
                      ],
                      "group_index_range": {
                        "chosen": false,
                        "cause": "not_group_by_or_distinct"
                      },
                      "analyzing_range_alternatives": {
                        "range_scan_alternatives": [
                          {
                            "index": "c1",
                            "ranges": [
                              "1 <= c1 <= 1",
                              "100 <= c1 <= 100"
                            ],
                            "index_dives_for_eq_ranges": true,
                            "rowid_ordered": false,
                            "using_mrr": false,
                            "index_only": false,
                            "rows": 2,
                            "cost": 4.41,
                            "chosen": true
                          }
                        ],
                        "analyzing_roworder_intersect": {
                          "usable": false,
                          "cause": "too_few_roworder_scans"
                        }
                      },
                      "chosen_range_access_summary": {
                        "range_access_plan": {
                          "type": "range_scan",
                          "index": "c1",
                          "rows": 2,
                          "ranges": [
                            "1 <= c1 <= 1",
                            "100 <= c1 <= 100"
                          ]
                        },
                        "rows_for_plan": 2,
                        "cost_for_plan": 4.41,
                        "chosen": true
                      }
                    }
                  }
                ]
              },
              {
                "considered_execution_plans": [
                  {
                    "plan_prefix": [
                    ],
                    "table": "`t1`",
                    "best_access_path": {
                      "considered_access_paths": [
                        {
                          "access_type": "range",
                          "rows": 2,
                          "cost": 4.81,
                          "chosen": true
                        }
                      ]
                    },
                    "cost_for_plan": 4.81,
                    "rows_for_plan": 2,
                    "chosen": true
                  }
                ]
              },
              {
                "attaching_conditions_to_tables": {
                  "original_condition": "((`t1`.`c1` = 1) or (`t1`.`c1` = 100))",
                  "attached_conditions_computation": [
                  ],
                  "attached_conditions_summary": [
                    {
                      "table": "`t1`",
                      "attached": "((`t1`.`c1` = 1) or (`t1`.`c1` = 100))"
                    }
                  ]
                }
              },
              {
                "refine_plan": [
                  {
                    "table": "`t1`",
                    "pushed_index_condition": "((`t1`.`c1` = 1) or (`t1`.`c1` = 100))",
                    "table_condition_attached": null,
                    "access_type": "range"
                  }
                ]
              }
            ]
          }
        },
        {
          "join_explain": {
            "select#": 1,
            "steps": [
            ]
          }
        }
      ]
    }
    
    
     

    As seen above, we can get almost every step in Optimizer processing, from setup conditions to plan choosing. The result is output according to order of the code executing, but EXPLAIN is just a print of JOIN_TAB. I can not explain every step, cause I do not know every steps.

     

    Actually the Optimizer code of MySQL is hard to read, with the trace, we can read the code more easily.

     

    References

    [1]
    MySQL Internals




    File translated from TEX by TTH, version 4.03.
    On 5 Jan 2013, 19:30.

    踏着落叶,追寻着我的梦想。转载请注明出处
  • 相关阅读:
    gdb常用命令
    gdb之watch命令
    gdb之x命令
    python's descriptor II
    MacOSX快捷键
    主题敏感词PageRank
    shell调试选项
    shell输出调试信息
    事务时间如何去掉wasted time
    深刻剖析VuGen脚本录制原理
  • 原文地址:https://www.cnblogs.com/nocode/p/2846592.html
Copyright © 2011-2022 走看看