zoukankan      html  css  js  c++  java
  • luoguP3312 [SDOI2014]数表

    题意

    默认(nleqslant m)

    (f(i))表示(i)的约数和,因为是积性函数,可以用线性筛求。

    先不考虑(a)的限制,我们推下式子:
    (sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}f(gcd(i,j)))
    枚举(gcd(i,j))
    (sumlimits_{d=1}^{n}f(d)sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}[gcd(i,j)=d])
    之后就莫反:
    (sumlimits_{d=1}^{n}f(d)sumlimits_{i=1}^{frac{n}{d}}sumlimits_{j=1}^{frac{m}{d}}[gcd(i,j)=1])
    (sumlimits_{d=1}^{n}f(d)sumlimits_{i=1}^{frac{n}{d}}sumlimits_{j=1}^{frac{m}{d}}sumlimits_{x|gcd(i,j)}mu(x))
    (sumlimits_{d=1}^{n}f(d)sumlimits_{x=1}^{frac{n}{d}}mu(x)sumlimits_{i=1}^{frac{n}{d}}sumlimits_{j=1}^{frac{m}{d}}[x|gcd(i,j)])
    (sumlimits_{d=1}^{n}f(d)sumlimits_{x=1}^{frac{n}{d}}mu(x)*frac{n}{d*x}*frac{m}{d*x})
    (T=d*x)
    (sumlimits_{T=1}^{n}frac{n}{T}*frac{m}{T}sumlimits_{d|T}f(d)*mu(frac{T}{d}))
    除法分块加预处理(sumlimits_{d|T}f(d)*mu(frac{T}{d}))即可。

    对于(a)的限制,我们离线按(a)排序,同时用树状数组维护即可。

    code:

    #include<bits/stdc++.h>
    using namespace std;
    #define pli pair<ll,int>
    #define mkp make_pair
    #define fir first
    #define sec second
    typedef long long ll;
    const int maxn=1e5+10;
    const int maxq=2*1e4+10;
    const ll mod=2147483648;
    int Q;
    int mu[maxn];
    ll g[maxn],ans[maxq];
    bool vis[maxn];
    pli f[maxn];
    vector<int>prime;
    struct Query{int n,m,lim,id;}qr[maxq];
    struct Tree_arry
    {
    	#define lowbit(x) (x&-x)
    	ll a[maxn];
    	inline void add(int x,ll k){for(int i=x;i<=100000;i+=lowbit(i))a[i]=(a[i]+k)%mod;}
    	inline ll query(int x){ll res=0;for(int i=x;i;i-=lowbit(i))res=(res+a[i])%mod;return res;}
    }tr;
    inline bool cmp(Query x,Query y){return x.lim<y.lim;}
    inline void pre_work(int n)
    {
    	mu[1]=1;f[1]=mkp(1,1);vis[1]=1;
    	for(int i=2;i<=n;i++)
    	{
    		if(!vis[i])prime.push_back(i),mu[i]=-1,f[i]=mkp(i+1,i),g[i]=i+1;
    		for(unsigned int j=0;j<prime.size()&&i*prime[j]<=n;j++)
    		{
    			vis[i*prime[j]]=1;
    			if(i%prime[j]==0)
    			{
    				mu[i*prime[j]]=0;
    				g[i*prime[j]]=g[i]*prime[j]+1;
    				f[i*prime[j]]=mkp(f[i].fir/g[i]*g[i*prime[j]],i*prime[j]);
    				break;
    			}
    			mu[i*prime[j]]=-mu[i];
    			f[i*prime[j]]=mkp(f[i].fir*f[prime[j]].fir,i*prime[j]);
    			g[i*prime[j]]=prime[j]+1;
    		}
    	}
    }
    inline void work(int x)
    {
    	for(int i=1;i*f[x].sec<=100000;i++)tr.add(i*f[x].sec,(f[x].fir*mu[i]%mod+mod)%mod);
    }
    inline ll calc(int n,int m)
    {
    	ll res=0;
    	if(n>m)swap(n,m);
    	for(int l=1,r;l<=n;l=r+1)
    	{
    		r=min(n/(n/l),m/(m/l));
    		res=(res+((tr.query(r)-tr.query(l-1))%mod+mod)%mod*(n/l)%mod*(m/l)%mod)%mod;
    	}
    	return res;
    }
    int main()
    {
    	pre_work(100000);
    	sort(f+1,f+100000+1);
    	scanf("%d",&Q);
    	for(int i=1;i<=Q;i++)scanf("%d%d%d",&qr[i].n,&qr[i].m,&qr[i].lim),qr[i].id=i;
    	sort(qr+1,qr+Q+1,cmp);
    	for(int i=1,j=1;i<=Q;i++)
    	{
    		while(f[j].fir<=qr[i].lim&&j<=100000)work(j),j++;
    		ans[qr[i].id]=calc(qr[i].n,qr[i].m);
    	}
    	for(int i=1;i<=Q;i++)printf("%lld
    ",ans[i]);
    	return 0;
    }
    
  • 相关阅读:
    通联支付相关注意事项
    账号配置vue版本的扫码下单以及对店铺进行装修的步骤
    银盒子扫码下单在线订单开启商品售卖时段使用说明
    ERP承接新后台优惠规则问题
    简易付安装后无法使用
    ASP.NET没有魔法——ASP.NET Identity 的“多重”身份验证代码篇
    ASP.NET没有魔法——ASP.NET Identity 的“多重”身份验证
    ASP.NET没有魔法——ASP.NET MVC 过滤器(Filter)
    ASP.NET没有魔法——ASP.NET Identity与授权
    ASP.NET没有魔法——ASP.NET Identity的加密与解密
  • 原文地址:https://www.cnblogs.com/nofind/p/11950727.html
Copyright © 2011-2022 走看看