zoukankan      html  css  js  c++  java
  • VC Dimension -衡量模型与样本的复杂度

    (1)定义VC Dimension:

    dichotomies数量的上限是成长函数,成长函数的上限是边界函数:

    所以VC Bound可以改写成:

    下面我们定义VC Dimension:

    对于某个备选函数集H,VC Dimension就是它所能shatter的最大数据个数N。VC Dimension = minimum break point - 1。所以在VC Bound中,(2N)^(k-1)可以替换为(2N)^(VC Dimension)。VC Dimension与学习算法A,输入分布P,目标函数f均无关。

    (2)PLA的VC Dimension  

    1D的PLA最多shatter2个点,所以VC Dimension = 2;      

    2D的PLA最多shatter3个点,所以VC Dimension = 3;                                                       

    猜测dD的PLA,VC Dimension会不会等于d+1? 只需证明dvc≥d+1并且 dvc≤d+1

    • 证明VC Dimension≥d+1,只需证明H可以shatter某些d+1个输入。

    构造一组d+1个输入:

     X=

    第一列灰色的1是对每个输入提高1维的操作,这个是一个d+1维的方阵,对角线全部是1,所以该矩阵可逆。即对于任意一种输出,我们总能找到一个备选函数使得

     

    图2 

    即这一组输入的所有dichotomies都被穷尽了,所以VC Dimension≥d+1得证

    • 证明VCDimension≤d+1,只需证H不能shatter任何d+2个输入

    在2D情形下构造一组4个输入:

    图3

    所以 x4 = x3 + x2 - x1

     

  • 相关阅读:
    Unix + OS IBM Aix System Director
    framework apache commons
    维吉尼亚密码
    破译换字式密码
    维吉尼亚密码表
    维吉尼亚密码表
    delete i;
    破译换字式密码
    破译换字式密码
    int *i = new int;
  • 原文地址:https://www.cnblogs.com/nolonely/p/6165602.html
Copyright © 2011-2022 走看看