马尔科夫过程
马尔科夫过程可以看做是一个自动机,以一定的概率在各个状态之间跳转。
考虑一个系统,在每个时刻都可能处于N个状态中的一个,N个状态集合是 {S1,S2,S3,...SN}。我们现在用q1,q2,q3,…qn来表示系统在t=1,2,3,…n时刻下的状态。在t=1时,系统所在的状态q取决于一个初始概率分布PI,PI(SN)表示t=1时系统状态为SN的概率。
马尔科夫模型有两个假设:
1. 系统在时刻t的状态只与时刻t-1处的状态相关;(也称为无后效性)
2. 状态转移概率与时间无关;(也称为齐次性或时齐性)
第一条具体可以用如下公式表示:
P(qt=Sj|qt-1=Si,qt-2=Sk,…)= P(qt=Sj|qt-1=Si)
其中,t为大于1的任意数值,Sk为任意状态
第二个假设则可以用如下公式表示:
P(qt=Sj|qt-1=Si)= P(qk=Sj|qk-1=Si)
其中,k为任意时刻。
隐马尔科夫模型由初始状态向量S、状态转移概率矩阵A和观测概率矩阵B决定,S和A决定状态序列,B决定观测序列,因此,隐马尔科夫模型λ可以用三元组符号表示,即
λ=(A,B,S)
A,B,S称为隐马尔科夫模型的三要素。
隐马尔科夫可以解决的三个问题
(1)概率计算问题:给定模型λ=(A,B,S)和观测序列O=(o1,o2,...,or),计算在模型λ下观测序列O出现的概率p(O|λ)
①直接计算法
如果穷尽所有的状态组合,即S1S1...S1, S1S1...S2, S1S1...S3, ..., S3S3...S3。这样的话t1时刻有N个状态,t2时刻有N个状态...tT时刻有N个状态,这样的话一共有N*N*...*N= NT种组合,时间复杂度为O(NT),计算时,就会出现“指数爆炸”,当T很大时,简直无法计算这个值。为解决这一问题,Baum提出了前向算法。
②前向算法
归纳过程
首先引入前向变量αt(i):在时间t时刻,HMM输出序列为O1O2...OT,在第t时刻位于状态si的概率。
当T=1时,输出序列为O1,此时计算概率为P(O1|μ):假设有三个状态(如下图)1、2、3,输出序列为O1,有三种可能一是状态1发出,二是从状态2发出,三是从状态3发出。另外从状态1发出观察值O1得概率为b1(O1),从状态2发出观察值O1得概率为b2(O1),从状态3发出观察值O1得概率为b3(O1)。因此可以算出
P(O1|μ)= π1*b1(O1)+π2*b2(O1) + π3*b3(O1)= α1(1) + α1(2) + α1(3)
当T=2时,输出序列为O1O2,此时计算概率为P(O1O2|μ):假设有三个状态(如下图)1、2、3,输出序列为O1,有三种可能一是状态1发出,二是从状态2发出,三是从状态3发出。另外从状态1发出观察值O2得概率为b1(O2),从状态2发出观察值O2得概率为b2(O2),从状态3发出观察值O2得概率为b3(O2)。
要是从状态1发出观察值O2,可能从第一时刻的1、2或3状态装换过来,要是从状态1转换过来,概率为α1(1)*a11*b1(O2),要是从状态2转换过来,概率为α1(2)*a21*b1(O2),要是从状态3转换过来,概率为α1(3)*a31*b1(O2),因此
P(O1O2,q2=s1|μ)= α1(1)*a11*b1(O2) + α1(2)*a21*b1(O2) + α1(3)*a31*b1(O2)=α2(1)
同理:P(O1O2,q2=s1|μ)= α1(1)*a12*b2(O2) + α1(2)*a22*b2(O2) + α1(3)*a32*b2(O2)=α2(2)
P(O1O2,q2=s1|μ)= α1(1)*a13*b1(O2) + α1(2)*a23*b3(O2) + α1(3)*a33*b3(O2)=α2(3)
所以:P(O1O2|μ)=P(O1O2,q2=s1|μ)+ P(O1O2,q2=s1|μ)+ P(O1O2,q2=s1|μ)
=α2(1) + α2(2) + α2(3)
以此类推。。。
前向算法
step1 初始化:α1(i) = πi*bi(O1), 1≤i≤N
step2 归纳计算:
step3 终结:
P(O|μ)=
时间复杂度
计算某时刻的某个状态的前向变量需要看前一时刻的N个状态,此时时间复杂度为O(N),每个时刻有N个状态,此时时间复杂度为N*O(N)=O(N2),又有T个时刻,所以时间复杂度为T*O(N2)=O(N2T)。
程序例证
前向算法计算P(O|M):
step1:α1(1) =π1*b1(red)=0.2*0.5=0.1 α1(2)=π2*b2(red)==0.4*0.4= 0.16 α1(3)=π3*b3(red)==0.4*0.7=0.21
step2:α2(1)=α1(1)*a11*b1(white) + α1(2)*a21*b1(white) + α1(3)*a31*b1(white)
...
step3:P(O|M) = α3(1)+α3(2)+α3(3)程序代码:
#include <stdio.h> #include <stdlib.h> #include <string.h> int main() { float a[3][3] = {{0.5,0.2,0.3},{0.3,0.5,0.2},{0.2,0.3,0.5}}; float b[3][2] = {{0.5,0.5},{0.4,0.6},{0.7,0.3}}; float alpha[4][3]; int i,j,k, count = 1; //output list int list[4] = {0,1,0,1}; //step1:Initialization alpha[0][0] = 0.2 * 0.5; alpha[0][1] = 0.4 * 0.4; alpha[0][2] = 0.4 * 0.7; //step2:iteration for (i=1; i<=3; i++) { for(j=0; j<=2; j++) { alpha[i][j] = 0; for(k=0; k<=2; k++) { alpha[i][j] += alpha[i-1][k] * a[k][j] * b[j][list[count]]; } } count += 1; } for (i=0; i<=3; i++) { for(j=0; j<=2; j++) { printf("a[%d][%d]=%f ",i+1,j+1,alpha[i][j]); } } //step3:end printf("Forward:%f ", alpha[3][0]+alpha[3][1]+alpha[3][2]); return 0; }
③后向算法
对于HMM的评估问题,利用动态规划可以用前向算法,从前到后算出前向变量;也可以采用后向算法,从后到前算出后向变量。
先介绍后向变量βt(i):给定模型μ=(A,B,π),并且在时间 时刻t 状态为si 的前提下,输出序列为Ot+1Ot+2...OT的概率,即
βt(i)=P(Ot+1Ot+2...OT|qt=si,μ)
归纳过程
假设仍然有3个状态
当t=T时,按照定义:时间t 状态qT 输出为OT+1......的概率,从T+1开始的输出是不存在的(因为T时刻是终止终止状态),即T之后是空,是个必然事件,因此βt(i)=1,1≤1≤N
当t=T-1时,
βT-1(i)=P(OT|qT-1=si,μ) = ai1*b1(OT)*βT(1) + ai2*b2(OT)*βT(2) + ai3*b3(OT)*βT(3)
......
当t=1时,
β1(1)=P(O2O3...OT|q2=s1,μ) = a11*b1(O2)*β2(1) + a12*b2(O2)*β2(2) + a13*b3(O2)*β2(3)
β1(2)=P(O2O3...OT|q2=s1,μ) = a21*b1(O2)*β2(1) + a22*b2(O2)*β2(2) + a23*b3(O2)*β2(3)
β1(3)=P(O2O3...OT|q2=s1,μ) = a31*b1(O2)*β2(1) + a32*b2(O2)*β2(2) + a33*b3(O2)*β2(3)
P(O1O2...OT|μ) =
=
=
后向算法
step1 初始化:βT(i)=1, 1≤1≤N
step2 归纳计算:
1≤t≤T-1, 1≤i≤N
step3 求终结和:
P(O|μ)=
时间复杂度
计算某时刻在某个状态下的后向变量需要看后一时刻的N个状态,此时时间复杂度为O(N),每个时刻有N个状态,此时时间复杂度为N*O(N)=O(N2),又有T个时刻,所以时间复杂度为T*O(N2)=O(N2T)。
程序例证
后向算法
计算P(O|M):
step1:β4(1) = 1 β4(2) = 1 β4(3) = 1
step2:β3(1) = β4(1)*a11*b1(white) + β4(2)*a12*b2(white) + β4(3)*a13*b3(white)
...
step3:P(O|M) = π1*β1(1)*b1(O1) + π2*β1(2)*b2(O1) + π3*β1(3)*b3(O1)
程序代码:
#include <stdio.h> #include <stdlib.h> #include <string.h> int main() { float a[3][3] = {{0.5,0.2,0.3},{0.3,0.5,0.2},{0.2,0.3,0.5}}; float b[3][2] = {{0.5,0.5},{0.4,0.6},{0.7,0.3}}; float result[4][3]; int list[4] = {0,1,0,1}; result[3][0] = 1; result[3][1] = 1; result[3][2] = 1; int i,j,k, count = 3; for (i=2; i>=0; i--) { for(j=0; j<=2; j++) { result[i][j] = 0; for(k=0; k<=2; k++) { result[i][j] += result[i+1][k] * a[j][k] * b[k][list[count]]; } } count -= 1; } for (i=0; i<=3; i++) { for(j=0; j<=2; j++) { printf("b[%d][%d] = %f ",i+1,j+1,result[i][j]); } } printf("backward:%f ", result[0][0]*0.2*0.5+result[0][1]*0.4*0.4+result[0][2]*0.4*0.7); return 0; }
重新回顾:
前向变量αt(i):在时刻t,在已知模型μ=(A,B,π)的条件下,状态处于si,输出序列为O102...Ot,前向变量为αt(i)
后向变量βt(i):在时刻t,在已知模型μ=(A,B,π)和状态处于si的条件下,输出序列为Ot+1Ot+2...OT,后向变量为βt(i)
公式推导:
P(O,qt=si|μ) = P(O1O2...OT, qt=si|μ)
=P(O1O2...Ot, qt=si,Ot+1Ot+2...OT|μ)
=P(O1O2...Ot, qt=si|μ) * P(Ot+1Ot+2...OT|O1O2...Ot, qt=si,μ)
=P(O1O2...Ot, qt=si|μ) * P(Ot+1Ot+2...OT|qt=si,μ)
=αt(i) * βt(i)
P(O|μ)=
案例分析:
分析:
P(q4=s3|O,M) = P(q4=s3, O|M)/P(O|M)
= P(O,q4=s3|M)/P(O|M)
= α4(3) * β4(3)/
程序代码:
#include <stdio.h> #include <stdlib.h> #include <string.h> int main() { float a[3][3] = {{0.5,0.2,0.3},{0.3,0.5,0.2},{0.2,0.3,0.5}}; float b[3][2] = {{0.5,0.5},{0.4,0.6},{0.7,0.3}}; float result_b[8][3]; float result_f[8][3]; float result, result_t; int list[8] = {0,1,0,0,1,0,1,1}; result_b[7][0] = 1; result_b[7][1] = 1; result_b[7][2] = 1; result_f[0][0] = 0.2 * 0.5; result_f[0][1] = 0.4 * 0.4; result_f[0][2] = 0.4 * 0.7; //Backward int i,j,k, count = 7; for (i=6; i>=0; i--) { for(j=0; j<=2; j++) { result_b[i][j] = 0; for(k=0; k<=2; k++) { result_b[i][j] += result_b[i+1][k] * a[j][k] * b[k][list[count]]; } } count -= 1; } for (i=0; i<=7; i++) { for(j=0; j<=2; j++) { printf("b[%d][%d]= %f ",i+1,j+1, result_b[i][j]); } } printf("Backward:%f ", result_b[0][0]*0.2*0.5+result_b[0][1]*0.4*0.4+result_b[0][2]*0.4*0.7); //Forward count = 1; for (i=1; i<=7; i++) { for(j=0; j<=2; j++) { result_f[i][j] = 0; for(k=0; k<=2; k++) { result_f[i][j] += result_f[i-1][k] * a[k][j] * b[j][list[count]]; } } count += 1; } for (i=0; i<=7; i++) { for(j=0; j<=2; j++) { printf("a[%d][%d]= %f ", i+1, j+1, result_f[i][j]); } } result = result_f[7][0] + result_f[7][1] + result_f[7][2]; printf("Forward: %f ", result); result_t = 0; for (i=0; i<=2; i++) { result_t += result_f[3][i] * result_b[3][i]; } printf("Result:%f ", result_f[3][2]*result_b[3][2]/result_t); return 0; }
(2)学习模型:已知观测序列O=(o1,o2,...,or),估计模型λ=(A,B,S)的参数,使得在该模型下观测序列概率p(O|λ)最大,即用极大似然估计的方法估计参数
隐马尔可夫模型的学习问题:给定一个输出序列O=O1O2...OT,如何调节模型μ=(A,B,π)的参数,使得P(O|M)最大。
最大似然估计是一种解决方法,如果产生的状态序列为Q=q1q2...qT,根据最大似然估计,可以通过以下公式推算:
πi‘ = δ(q1,si)
aij' = Q中从状态qi转移到qj的次数/Q中从状态qi转移到另一状态(包括qj)的次数
bj(k)' = Q中从状态qj发出符号Vk的次数/ Q中到达状态qj的次数
δ(x,y)为克罗奈克函数,当x=y时,δ(x,y)=1;否则,δ(x,y)=0
但是注意,在实际中,状态Q=q1q2...qT是观察不到的(隐变量),因此上述的这种求法是有问题的。幸好希望最大化,可以用于含有隐变量的统计模型的参数最大似然估计。基本思想是初始时,随机的给模型参数赋值,但是要遵循模型对参数的限制,例如,从一个状态发出的所有状态转移概率之和为1,得到模型μ0。然后根据μ0中的具体值,带入下式,可以得到u1.依次往下迭代,直到收敛于最大似然估计值。这种迭代爬山算法可以局部使P(O|μ)最大。称为Baum-Welch算法或前向后向算法。
给定HMM的参数μ和观察序列O=O1O2...OT,在时间t位于状态si,在时间t+1位于状态sj的概率为ξt(i,j)=P(qt=si,qt+1=sj|O,μ),公式推导如下:
................(1)
给定HMM μ 和序列O=O1O2...OT,在时间t位于状态si的概率为:.........(2)
这样求μ的参数估计重新改写:
πi‘ = r1(i) ...........(3)
aij' = Q中从状态qi转移到qj的次数/Q中从状态qi转移到另一状态(包括qj)的次数
= ..........(4)
bj(k)' = Q中从状态qj发出符号Vk的次数/ Q中到达状态qj的次数
= ..............(5)
前向后项算法:
step1 初始化: 随机地给定参数 πi, aij, bj(k),使其满足条件:
由此得到μ0,令i=0
step2 EM计算:
E步骤:根据(1)(2)式计算期望ξt(i,j) 和 rt(i)
M步骤:根据期望ξt(i,j) 和 rt(i),带入(3)(4)(5)重新得到πi, aij, bj(k),得到μi+1
step3 循环计算: i = i+1, 直到πi, aij, bj(k)收敛
(3)预测问题:已知模型λ=(A,B,S)和观测序列O=(o1,o2,...,or),求给定观测序列条件概率p(O|λ)最大的状态序列。即给定观测序列,求最优可能的对应的状态序列。
一种想法是求出每个状态的概率rt(i)最大(rt(i)=P(qt=si,O|μ)),记q't(i)=argQmax(rt(i)),但是这样做,忽略了状态之间的关系,很可能两个状态之间的概率为0,即aq't(i)q't+1(i)=0,这样求得的“最优”状态序列是不合法的。
为防止状态之间转移概率为0(断续问题),换一种思路,不是求单个状态求得最大值,而是求得整个状态序列最大值,即求
Q'= argQmaxP(Q|O,μ)
此时用维特比算法,先定义下维特比变量δt(i):在时间t,HMM沿着一条路径到达状态si,并输出观察序列O=O1O2...Ot的最大概率:
δt(i)=max P(q1q2...qt=si,O1O2...Ot|μ)
t t+1
上图中,对于从t时刻三个到 t+1时刻的状态1,到底取状态1,2还是3,不是看单独状态1,2还是3的概率,而是看在状态1,2,3各自的维特比变量值乘以相应的状态转换概率,从中选出最大值,假设2时最大,那么记下t+1时刻状态1之前的路径是t时刻的状态2,以此类推。
δt(i)的递归关系式: δt+1(i)=maxj δt(j)*aji*bi(Ot+1),为了记忆路径,定义路径变量ψt(i),记录该路径上的状态si的前一个状态。
维特比算法
step1 初始化:
δt(i) = πi*bi(O1), 1≤i≤N
ψt(i) = 0
step2 归纳计算:
δt(i)=max1≤j≤N δt-1(j)*aji*bi(Ot),2≤t≤T;1≤i≤N
记忆路径 ψt(i) = arg [max1≤j≤Nδt-1(j)*aji*bi(Ot)]
step3 终结:
QT' = arg max1≤i≤N [δT(i)]
P'(QT') = max1≤i≤N [δT(i)]
step4 路径回溯:
qt'=ψt+1(qt+1') , t=T-1,T-2...1
时间复杂度
计算某时刻的某个状态的前向变量需要比较前一时刻的N个状态,此时时间复杂度为O(N),每个时刻有N个状态,此时时间复杂度为N*O(N)=O(N2),又有T个时刻,所以时间复杂度为T*O(N2)=O(N2T)。
程序例证
step1 初始化:δ1(1) = 0.2*0.5=0.1 ,δ1(2) = 0.4*0.4=0.16, δ1(3) = 0.4*0.7=0.21
step2 归纳计算:δ2(1) =max[0.1*0.5,0.16*0.3,0.21*0.2]*0.6
...
step3 终结:最佳路径是δ4(1)δ4(2)δ4(3)最大的一个对应的状态
step4 回溯:从最后一个状态往回返
程序代码:
#include <stdio.h> #include <stdlib.h> #include <string.h> int main() { float a[3][3] = {{0.5,0.2,0.3},{0.3,0.5,0.2},{0.2,0.3,0.5}}; float b[3][2] = {{0.5,0.5},{0.4,0.6},{0.7,0.3}}; float result[4][3]; int list[4] = {0,1,0,1}; int max[4][3]; float tmp; //step1:Initialization result[0][0] = 0.2*0.5; result[0][1] = 0.4*0.4; result[0][2] = 0.4*0.7; int i,j,k, count = 1, max_node; float max_v; //step2:归纳运算 for (i=1; i<=3; i++) { for(j=0; j<=2; j++) { tmp = result[i-1][0] * a[0][j] * b[j][list[count]]; max[i][j] = 0; for(k=1; k<=2; k++) { if(result[i-1][k] * a[k][j] * b[j][list[count]] > tmp) { tmp = result[i-1][k] * a[k][j]* b[j][list[count]]; max[i][j] = k; } result[i][j] = tmp; } max_v = result[3][0]; max_node = 0; for (k=1; k<=2; k++) { if(result[3][k] > max_v) { max_v = result[3][k]; max_node = k; } } } count += 1; } //step3:终结 for (i=0; i<=3; i++) { for(j=0; j<=2; j++) { printf("%d %d %f ",i+1,j+1,result[i][j]); } } printf("Pmax=%f ", max_v); printf("step4:%d ", max_node+1); //step4:回溯 for(k=3; k>=1; k--) { printf("step%d:%d ",k, max[k][max_node]+1); max_node = max[k][max_node]; } return 0; }
转自http://www.cnblogs.com/kaituorensheng/archive/2012/12/01/2797230.html