zoukankan      html  css  js  c++  java
  • 2020牛客暑期多校训练营(第一场)J-Easy Integration

    2020牛客暑期多校训练营(第一场)(J-Easy) (Integration) 解题报告

    题意:

       计算:(∫_0^1 (x - x^2)^ndx)

    思路:

       (n) 次分部积分
       分部积分公式(来源百度百科):

    [∫u(x)v^{'}(x)dx = u(x)v(x) - ∫u^{'}(x)v(x)dx ]

      那么:

    [∫_0^1 (x - x^2)^ndx = ∫_0^1x^n(1-x)^ndx ]

    [= [frac{x^{n+1}}{n+1}(1-x)^n]_0^1 - ∫_0^1frac{x^{n+1}}{n+1}(-n(1-x)^{n-1})dx ]

    [= frac{n}{n+1}∫_0^1x^{n+1}(1-x)^{n-1}dx ]

    [= frac{n}{n+1} imes frac{n-1}{n+2} imes ∫_0^1x^{n+2}(1-x)^{n-2}dx ]

      根据规律依次类推下去可得:

    [ exttt{原式 = } frac{n}{n+1} imesfrac{n-1}{n+2} imes frac{n-2}{n+3} imes ... imes frac{1}{2n+1} = frac{n!}{frac{(2n+1)!}{n!}} = frac{n! imes n!}{(2n+1)!} ]

    代码:

    /*
    @Author: nonameless
    @Date:   2020-07-14 15:28:05
    @Email:  2835391726@qq.com
    @Blog:   https://www.cnblogs.com/nonameless/
    */
    #include <bits/stdc++.h>
    #define x first
    #define y second
    #define pb push_back
    #define sz(x) (int)x.size()
    #define all(x) x.begin(), x.end()
    using namespace std;
    typedef long long ll;
    typedef pair<ll, ll> PLL;
    typedef pair<int, int> PII;
    const double eps = 1e-8;
    const double PI  = acos(-1.0);
    const int INF = 0x3f3f3f3f;
    const ll LNF  = 0x3f3f3f3f3f3f;
    inline int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
    inline ll  gcd(ll  a, ll  b) { return b ? gcd(b, a % b) : a; }
    inline int lcm(int a, int b) { return a * b / gcd(a, b); }
    const int MOD = 998244353;
    const int N = 2e6 + 10;
    ll f[N];
    
    ll fastPow(ll a, ll b){
        ll res = 1;
        while(b){
            if(b & 1) res = res * a % MOD;
            b >>= 1;
            a = a * a % MOD;
        }
        return res;
    }
    
    int main(){
    
        f[0] = 1;
        for(int i = 1; i < N; i ++)
            f[i] = f[i - 1] * i % MOD;
    
        int n; 
        while(cin >> n){
            ll ans = f[n] * f[n] % MOD * fastPow(f[2*n+1], MOD - 2) % MOD;
            cout << ans << endl;
        }
        return 0;
    }
    
    
  • 相关阅读:
    基础编程练习题第一波
    TYVJ 1541 八数码
    NOIP 2014 寻找道路
    NOIP2014 解方程
    POJ 3213 矩阵乘法(优化)
    POJ 1523 Tarjan求割点
    POJ 3237 树链剖分+线段树
    SPOJ 375 树链剖分
    NOIP 2012 T2 国王游戏 (贪心+高精)
    POJ 1364 差分约束
  • 原文地址:https://www.cnblogs.com/nonameless/p/13299621.html
Copyright © 2011-2022 走看看