zoukankan      html  css  js  c++  java
  • AtCoder Beginner Contest 178 A

    题目链接

    A - Not

    思路:

    代码:
    /*
     * @Author       : nonameless
     * @Date         : 2020-09-13 19:55:56
     * @LastEditors  : nonameless
     * @LastEditTime : 2020-09-13 20:00:55
     */
    #include <bits/stdc++.h>
    #define x first
    #define y second
    #define pb push_back
    #define sz(x) (int)x.size()
    #define toStr(name) (#name)
    #define all(x) x.begin(), x.end()
    using namespace std;
    typedef long long ll;
    typedef pair<ll, ll> PLL;
    typedef pair<int, int> PII;
    typedef pair<double, double> PDD;
    const double eps = 1e-6;
    const double PI  = acos(-1.0);
    const int INF = 0x3f3f3f3f;
    const ll LNF  = 0x3f3f3f3f3f3f3f3f;
    inline int gcd(int a, int b) { return b ? gcd(b,a % b):a;}
    inline ll  gcd(ll  a, ll  b) { return b ? gcd(b,a % b):a;}
    inline int lcm(int a, int b) { return a * b / gcd(a, b); }
    
    template<class T>
    inline void read(T &x){
        x = 0;
        int f = 1;
        char c = getchar();
        while(c < '0' || c > '9') if(c == '-') { f = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
        x = x * f;
    }
    
    template<class T>
    inline void out(string a, T x){ cout << a << " = " << x << endl; }
    
    
    int main(){
    
        int x; read(x);
        if(x == 0) puts("1");
        if(x == 1) puts("0");
    
        
        return 0;
    }
    

    B - Product Max

    思路:

    显然答案只会出现在端点的相乘上,所以暴力枚举出四种情况取 (max) 即可。

    代码:
    /*
     * @Author       : nonameless
     * @Date         : 2020-09-13 20:02:06
     * @LastEditors  : nonameless
     * @LastEditTime : 2020-09-14 00:51:31
     */
    #include <bits/stdc++.h>
    #define x first
    #define y second
    #define pb push_back
    #define sz(x) (int)x.size()
    #define toStr(name) (#name)
    #define all(x) x.begin(), x.end()
    using namespace std;
    typedef long long ll;
    typedef pair<ll, ll> PLL;
    typedef pair<int, int> PII;
    typedef pair<double, double> PDD;
    const double eps = 1e-6;
    const double PI  = acos(-1.0);
    const int INF = 0x3f3f3f3f;
    const ll LNF  = 0x3f3f3f3f3f3f3f3f;
    inline int gcd(int a, int b) { return b ? gcd(b,a % b):a;}
    inline ll  gcd(ll  a, ll  b) { return b ? gcd(b,a % b):a;}
    inline int lcm(int a, int b) { return a * b / gcd(a, b); }
    
    template<class T>
    inline void read(T &x){
        x = 0;
        int f = 1;
        char c = getchar();
        while(c < '0' || c > '9') if(c == '-') { f = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
        x = x * f;
    }
    
    template<class T>
    inline void out(string a, T x){ cout << a << " = " << x << endl; }
    
    
    int main(){
    
        ll a, b, c, d; cin >> a >> b >> c >> d;
        ll ans = -LNF;
        ans = max(ans, a * c);
        ans = max(ans, a * d);
        ans = max(ans, b * c);
        ans = max(ans, b * d);
        cout << ans << endl;
        return 0;
    }
    

    C - Ubiquity

    思路:

    直接考虑不方便,所以我们考虑不合法的方案数。

    先用快速幂算出 (10^n) 即总方案数。

    然后枚举不合法的情况:

    • 只有 (0) 的情况:(sum_{i=1}^nC_n^i imes 8^{n-i})。((i)(0) 出现的个数)
    • 只有 (9) 的情况:与 (0) 的一样
    • 没有 (0, 9) 的情况:(8^n)

    然后减去上述情况即可。

    代码:
    /*
     * @Author       : nonameless
     * @Date         : 2020-09-13 20:14:14
     * @LastEditors  : nonameless
     * @LastEditTime : 2020-09-13 20:38:55
     */
    #include <bits/stdc++.h>
    #define x first
    #define y second
    #define pb push_back
    #define sz(x) (int)x.size()
    #define toStr(name) (#name)
    #define all(x) x.begin(), x.end()
    using namespace std;
    typedef long long ll;
    typedef pair<ll, ll> PLL;
    typedef pair<int, int> PII;
    typedef pair<double, double> PDD;
    const double eps = 1e-6;
    const double PI  = acos(-1.0);
    const int INF = 0x3f3f3f3f;
    const ll LNF  = 0x3f3f3f3f3f3f3f3f;
    inline int gcd(int a, int b) { return b ? gcd(b,a % b):a;}
    inline ll  gcd(ll  a, ll  b) { return b ? gcd(b,a % b):a;}
    inline int lcm(int a, int b) { return a * b / gcd(a, b); }
    
    template<class T>
    inline void read(T &x){
        x = 0;
        int f = 1;
        char c = getchar();
        while(c < '0' || c > '9') if(c == '-') { f = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
        x = x * f;
    }
    
    template<class T>
    inline void out(string a, T x){ cout << a << " = " << x << endl; }
    
    const int mod = 1e9 + 7;
    
    const int N = 1e6 + 10;
    
    ll f[N];
    
    ll qpow(ll a, ll b){
        ll res = 1;
        while(b){
            if(b & 1) res = res * a % mod;
            b >>= 1;
            a = a * a % mod;
        }
        return res;
    }
    
    ll C(ll a, ll b){
        return f[a] * (qpow(f[b] * f[a - b] % mod, mod - 2)) % mod;
    }
    
    
    
    int main(){
    
        f[0] = 1;
        for(int i = 1; i < N; i ++) f[i] = f[i - 1] * i % mod;
    
        ll n; read(n);
        if(n == 1) puts("0");
        else{
            ll ans = qpow(10, n);
            ll t1 = 0;
            for(int i = 1; i <= n; i ++){
                t1 = (t1 + C(n, i) * qpow(8, n - i) * 2 % mod) % mod;
            }
            t1 = (t1 + qpow(8, n)) % mod;
            ans = (ans - t1 + mod) % mod;
            cout << ans << endl;
        }
        return 0;
    }
    

    D - Redistribution

    思路:

    (f[i][j]) :长度为 (i) 且和为 (j) 的序列的个数。

    那么转移方程有:(f[i][j] = f[i][j] + f[i-1][j-k](3leq kleq j))

    但是这样枚举是有三重循环,显然超时,所以考虑优化掉一重循环。

    观察方程可以发现 (f[i-1][j-k]) 是可以用前缀和求出来的,因为他就是上一层计算出来的,所以我们可以在处理完 (i) 的时候,求出当前长度的前缀和供下一层使用。

    注意边界的初始化。对长度为 (0) 的也要求一次前缀和。

    代码:
    /*
     * @Author       : nonameless
     * @Date         : 2020-09-13 20:40:53
     * @LastEditors  : nonameless
     * @LastEditTime : 2020-09-14 00:59:44
     */
    #include <bits/stdc++.h>
    #define x first
    #define y second
    #define pb push_back
    #define sz(x) (int)x.size()
    #define toStr(name) (#name)
    #define all(x) x.begin(), x.end()
    using namespace std;
    typedef long long ll;
    typedef pair<ll, ll> PLL;
    typedef pair<int, int> PII;
    typedef pair<double, double> PDD;
    const double eps = 1e-6;
    const double PI  = acos(-1.0);
    const int INF = 0x3f3f3f3f;
    const ll LNF  = 0x3f3f3f3f3f3f3f3f;
    inline int gcd(int a, int b) { return b ? gcd(b,a % b):a;}
    inline ll  gcd(ll  a, ll  b) { return b ? gcd(b,a % b):a;}
    inline int lcm(int a, int b) { return a * b / gcd(a, b); }
    
    template<class T>
    inline void read(T &x){
        x = 0;
        int f = 1;
        char c = getchar();
        while(c < '0' || c > '9') if(c == '-') { f = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
        x = x * f;
    }
    
    template<class T>
    inline void out(string a, T x){ cout << a << " = " << x << endl; }
    
    const int N = 2e3 + 10;
    
    const int mod = 1e9 + 7;
    
    int f[N / 3][N];
    
    int main(){
    
        int s; read(s);
        ll ans = 0;
        f[0][0] = 1;
        for(int i = 1; i <= s; i ++) f[0][i] = 1;
        for(int i = 1; i <= s / 3; i ++){
            for(int j = 3; j <= s; j ++){
                f[i][j] = (f[i][j] + f[i - 1][j - 3]) % mod;
                ans = (ans + f[i][s]) % mod;
            }
            for(int j = 1; j <= s; j ++) f[i][j] = (f[i][j] + f[i][j - 1]) % mod;
        }
    
        cout << ans << endl;
        
        return 0;
    }
    

    E - Dist Max

    思路:

    这其实就是一个最远曼哈顿距离的模板题(奈何我不知道)。

    参考博客

    由:(|a - b| = max(a - b, b - a))

    那么可以将 (|x_i-x_j|+|y_i-y_j|) 变为在下面四种情况中取 (max)

    • ((x_i-x_j) + (y_i-y_j))
    • ((x_i-x_j)+(y_j-y_i))
    • ((x_j-x_i)+(y_i-y_j))
    • ((x_j-x_i)+(y_j-y_i))

    我们利用交换律将一个点的坐标放在一起:

    1. ((x_i+y_i)+(-x_j-y_j))
    2. ((x_i-y_i)+(-y_i+y_j))
    3. ((-x_i+y_i)+(x_j-y_j))
    4. ((-x_i-y_i)+(x_j+y_j))

    我们可以发现其实就只有两种情况了((1,4) 是一种情况,(2, 3) 是一种情况)即:

    • ((x_i+y_i)+(-x_j-y_j))
    • ((x_i-y_i)+(-y_i+y_j))
    代码:
    /*
     * @Author       : nonameless
     * @Date         : 2020-09-14 00:38:45
     * @LastEditors  : nonameless
     * @LastEditTime : 2020-09-14 00:45:05
     */
    #include <bits/stdc++.h>
    #define x first
    #define y second
    #define pb push_back
    #define sz(x) (int)x.size()
    #define toStr(name) (#name)
    #define all(x) x.begin(), x.end()
    using namespace std;
    typedef long long ll;
    typedef pair<ll, ll> PLL;
    typedef pair<int, int> PII;
    typedef pair<double, double> PDD;
    const double eps = 1e-6;
    const double PI  = acos(-1.0);
    const int INF = 0x3f3f3f3f;
    const ll LNF  = 0x3f3f3f3f3f3f3f3f;
    inline int gcd(int a, int b) { return b ? gcd(b,a % b):a;}
    inline ll  gcd(ll  a, ll  b) { return b ? gcd(b,a % b):a;}
    inline int lcm(int a, int b) { return a * b / gcd(a, b); }
    
    template<class T>
    inline void read(T &x){
        x = 0;
        int f = 1;
        char c = getchar();
        while(c < '0' || c > '9') if(c == '-') { f = -1; c = getchar(); }
        while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
        x = x * f;
    }
    
    template<class T>
    inline void out(string a, T x){ cout << a << " = " << x << endl; }
    
    vector<int> v1, v2, v3, v4;
    
    bool cmp(int a, int b) { return a > b; }
    
    
    int main(){
    
        int n; read(n);
        for(int i = 1; i <= n; i ++){
            int x, y; 
            read(x); read(y);
            v1.pb(x + y);
            v2.pb(-x - y);
            v3.pb(-x + y);
            v4.pb(x - y);
        }
        sort(all(v1), cmp); sort(all(v2), cmp); sort(all(v3), cmp); sort(all(v4), cmp);
        int ans = max(v1[0] + v2[0], v3[0] + v4[0]);
        cout << ans << endl;
        return 0;
    }
    
    
  • 相关阅读:
    MySQL数据库详解(二)执行SQL更新时,其底层经历了哪些操作?
    MySQL数据库详解(一)执行SQL查询语句时,其底层到底经历了什么?
    网页静态化解决方案Freemarker
    好久没来看看了~
    springmvc(五) 数据回显与自定义异常处理器
    springmvc(四) springmvc的数据校验的实现
    springmvc(三) 参数绑定、
    springmvc(二) ssm框架整合的各种配置
    springmvc(一) springmvc框架原理分析和简单入门程序
    cursor:pointer 什么意思?
  • 原文地址:https://www.cnblogs.com/nonameless/p/13664377.html
Copyright © 2011-2022 走看看