zoukankan      html  css  js  c++  java
  • dfs找环

    http://acm.hdu.edu.cn/showproblem.php?pid=6736

    Forest Program

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 299    Accepted Submission(s): 111


    Problem Description
    The kingdom of Z is fighting against desertification these years since there are plenty of deserts in its wide and huge territory. The deserts are too arid to have rainfall or human habitation, and the only creatures that can live inside the deserts are the cactuses. In this problem, a cactus in desert can be represented by a cactus in graph theory.
    In graph theory, a cactus is a connected undirected graph with no self-loops and no multi-edges, and each edge can only be in at most one simple cycle. While a tree in graph theory is a connected undirected acyclic graph. So here comes the idea: just remove some edges in these cactuses so that the remaining connected components all become trees. After that, the deserts will become forests, which can halt desertification fundamentally.
    Now given an undirected graph with n vertices and m edges satisfying that all connected components are cactuses, you should determine the number of schemes to remove edges in the graph so that the remaining connected components are all trees. Print the answer modulo 998244353.
    Two schemes are considered to be different if and only if the sets of removed edges in two schemes are different.
     
    Input
    The first line contains two non-negative integers n, m (1 ≤ n ≤ 300 000, 0 ≤ m ≤ 500 000), denoting the number of vertices and the number of edges in the given graph.
    Next m lines each contains two positive integers u, v (1 ≤ u, v ≤ n, u = v), denoting that vertices u and v are connected by an undirected edge.
    It is guaranteed that each connected component in input graph is a cactus.
     
    Output
    Output a single line containing a non-negative integer, denoting the answer modulo 998244353.
     
    Sample Input
    3 3 1 2 2 3 3 1 6 6 1 2 2 3 3 1 2 4 4 5 5 2
     
    Sample Output
    7 49
     
    Source
     
    Recommend
    chendu   |   We have carefully selected several similar problems for you:  6742 6741 6740 6739 6738
    //#include <bits/stdc++.h>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <iostream>
    #include <algorithm>
    #include <iostream>
    #include <cstdio>
    #include <string>
    #include <cstring>
    #include <stdio.h>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <string.h>
    #include <vector>
    #define ME(x , y) memset(x , y , sizeof(x))
    #define SF(n) scanf("%d" , &n)
    #define rep(i , n) for(int i = 0 ; i < n ; i ++)
    #define INF  0x3f3f3f3f
    #define mod 998244353
    #define PI acos(-1)
    using namespace std;
    typedef long long ll ;
    const int maxn = 505005 ;
    const int maxm = 2050000;
    ll n , m , sum , ans , vis[maxn] , dfn[maxn] , cnt;
    ll head[maxn];
    struct Edge
    {
        ll to , next ;
    }e[maxm];
    
    void add(ll u , ll v)
    {
        e[cnt].to = v ;
        e[cnt].next = head[u];
        head[u] = cnt++;
    }
    
    void init()
    {
        memset(vis , 0 , sizeof(vis));
        memset(dfn , 0 , sizeof(dfn));
        memset(head , -1 , sizeof(head));
        cnt = 0 , ans = 1 ;
    }
    ll qpow(ll base, ll n)
    {
        ll ans = 1;
        while(n)
        {
            if(n&1) ans=(ans%mod)*(base%mod)%mod;
            base = (base%mod) * (base%mod)%mod;
            n/=2;
        }
        return ans%mod;
    }
    
    void dfs(ll id , ll step , ll fa)
    {
        vis[id] = 1 , dfn[id] = step ;
        for(ll i = head[id] ; i != -1 ; i = e[i].next)
        {
            ll v = e[i].to ;
            //cout << i << " " << v << endl ;
            if(v == fa || vis[v] == 2) continue ;
            if(vis[v] == 1)
            {
                sum += step - dfn[v] + 1;
                ans *= (qpow(2 , step-dfn[v]+1)-1+mod) % mod ;
                ans %= mod ;
            }
            else
            {
                dfs(v , step+1 , id);
            }
        }
        vis[id] = 2 ;
    }
    
    int main()
    {
        scanf("%lld%lld" , &n , &m);
        init();
        for(ll i = 1 ; i <= m ; i++)
        {
            ll u , v ;
            scanf("%lld%lld" , &u , &v);
            add(u , v);
            add(v , u);
        }
        for(ll i = 1 ; i <= n ; i++)
        {
            if(!vis[i])
                dfs(i , 1 , -1);
        }
        ans *= qpow(2 , m - sum);
        ans %= mod ;
        printf("%lld
    " , ans);
    
    
        return 0;
    }
  • 相关阅读:
    新安装的Apache和php,测试可以解析phpinfo,但是无法打开drupal网站
    Drupal7安装注意事项
    drupal7 为视图添加 过滤标准 内容类型
    Drupal网站报错:PDOException: in lock_may_be_available()
    窗口聚合函数与分组聚合函数的异同
    Linux环境下段错误的产生原因及调试方法小结(转)
    gzip 所使用压缩算法的基本原理(选摘)
    InfluxDB使用纪录
    子网掩码解释(转)
    列存的压缩原理学习
  • 原文地址:https://www.cnblogs.com/nonames/p/11606127.html
Copyright © 2011-2022 走看看