https://ac.nowcoder.com/acm/contest/1126/B
链接:https://ac.nowcoder.com/acm/contest/1126/B
来源:牛客网
上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。
游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没传出去的那个同学就是败者,要给大家表演一个节目。
聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球的方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有3个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。
游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没传出去的那个同学就是败者,要给大家表演一个节目。
聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球的方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有3个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。
输入描述:
共一行,有两个用空格隔开的整数n,m( 3 ≤ n ≤ 30,1 ≤ m ≤ 30 )。
输出描述:
共一行,有一个整数,表示符合题意的方法数。
备注:
40%的数据满足:3 ≤ n ≤ 30,1 ≤ m ≤ 20;
100%的数据满足:3 ≤ n ≤ 30,1 ≤ m ≤ 30。
//#include <bits/stdc++.h> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <iostream> #include <algorithm> #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdio.h> #include <queue> #include <stack>; #include <map> #include <set> #include <string.h> #include <vector> #define ME(x , y) memset(x , y , sizeof(x)) #define SF(n) scanf("%d" , &n) #define rep(i , n) for(int i = 0 ; i < n ; i ++) #define INF 0x3f3f3f3f #define mod 998244353 #define PI acos(-1) using namespace std; typedef long long ll ; int dp[39][39];//i为走的步数,j为编号。 int main() { int n , m ; scanf("%d%d" , &n , &m); dp[0][1] = 1 ; for(int i = 1 ; i <= m ; i++) { for(int j = 1 ; j <= n ; j++) { if(j == 1) dp[i][j] = dp[i-1][n] + dp[i-1][2]; else if(j == n) dp[i][j] = dp[i-1][1] + dp[i-1][n-1]; else { dp[i][j] = dp[i-1][j-1] + dp[i-1][j+1]; } } } cout << dp[m][1] << endl ; return 0 ; }