http://poj.org/problem?id=1990
题意:有n头牛在坐标轴上,给出每一头牛听见声音所需要的音量,和所在位置,要使两只牛可以交流需要dis(u,v)*max(vol(u,v))
求所有牛之间都可以交流的音量。
解法:以音量值对牛排序,开两个树状数组,一个记录第i头牛前有多少比该牛位置小的牛数量sum1,另一个记录比该牛位置小的坐标和sum2。
可以计算每一头牛的贡献为:((sum1 - (i - sum1 - 1)) + sum - sum2 - sum2)*vol[i].
因为要分求该牛左边所有坐标差之和和右边坐标差之和。根据vol排序所以此时vol是最大。
//#include<bits/stdc++.h> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <iostream> #include <string> #include <stdio.h> #include <queue> #include <stack> #include <map> #include <set> #include <string.h> #include <vector> typedef long long ll ; #define int ll #define mod 1000000007 #define gcd __gcd #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) //ll lcm(ll a , ll b){return a*b/gcd(a,b);} //ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define SC scanf #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 using namespace std; const int N = 1e6+100; const int maxn = 2e4+9; int s1[maxn] , s2[maxn]; pii a[maxn]; int n ; int lowerbit(int x){ return x&(-x); } void add(int x , int val){ while(x <= maxn){ s1[x]++; s2[x] += val; x += lowerbit(x); } } int query(int x , int s[]){ int ans = 0 ; while(x){ ans += s[x]; x -= lowerbit(x); } return ans ; } void solve(){ cin >> n ; rep(i , 1 , n){ cin >> a[i].fi >> a[i].se; } sort(a + 1 , a + 1 + n); int ans = 0 , sum = 0 ; rep(i , 1 , n){ int sum1 = query(a[i].se , s1); int sum2 = query(a[i].se , s2); ans += ((sum1 - (i-sum1-1))*a[i].se - sum2 + (sum-sum2))*a[i].fi; sum += a[i].se; add(a[i].se , a[i].se); } cout << ans << endl; } signed main() { //ios::sync_with_stdio(false); //cin.tie(0); cout.tie(0); //cnt = 0; //int t ; //scanf("%lld" , &t); //while(t--){ solve(); //} }