https://vjudge.net/contest/295090#problem/B
题意:给出一个序列,在该序列找一个数m,问该在该序列第几小。
解法一:直接统计比m小的数,O(n)
解法二:排序,再二分注意要mid-1,因为如果在该序列中找不到该数时会死循环,O(nlogn)
解法三:通过一次遍历交换将比a[Mid]小的数放到a[Mid]左边,比a[Mid]大的数放到a[Mid]右边。注意并没有完全排序(这里使用了快速排序的思想)O(2*n)。
#include<bits/stdc++.h> typedef long long ll ; #define int ll #define mod 1000000007 #define gcd __gcd #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) //ll lcm(ll a , ll b){return a*b/gcd(a,b);} //ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define pb push_back #define mp make_pair #define cin(x) scanf("%lld" , &x); using namespace std; const int N = 1e7+9; const int maxn = 1e6+9; const double esp = 1e-6; int a[maxn]; int n , m ; /*void solve(){//排序二分 int n , m ; scanf("%lld%lld" , &n , &m); rep(i , 1 , n){ scanf("%lld" , &a[i]); } sort(a+1 , a+1+n); int l = 1 , r = n , flag = 0; while(r >= l){ int mid = (r + l) >> 1 ; cout << l << " " << mid << " " << r << endl; if(a[mid] > m){ r = mid - 1 ; }else if(a[mid] < m){ l = mid + 1 ; }else{ flag = 1 ; r = mid ; break; } } if(flag) cout << r << endl; else cout << -1 << endl; }*/ int binary_search(int le , int ri){ if(le > ri) return 0; int l = le , r = ri ; int p = a[le]; while(l < r){ while(l < r && a[r] > p){ r--; } a[l] = a[r]; while(l < r && a[l] < p){ l++; } a[r] = a[l]; } a[l] = p ; if(a[l] == m) return l - le + 1 ; else if(a[l] < m) return l - le + 1 + binary_search(l + 1 , ri); else return binary_search(le , l - 1); } void solve(){ int flag = 0 ; scanf("%lld%lld" , &n , &m); rep(i , 1 , n){ scanf("%lld" , &a[i]); if(a[i] == m) flag = 1 ; } cout << (flag ? binary_search(1 , n) : -1) << endl; } signed main() { //ios::sync_with_stdio(false); //cin.tie(0); cout.tie(0); //int t ; //cin(t); //while(t--){ solve(); //} }