zoukankan      html  css  js  c++  java
  • 树状数组优化+dp

    http://acm.hdu.edu.cn/showproblem.php?pid=5542

    题意:给出长度为N(1 <= N <= 1e3)的序列,求所有长度为M的递增子序列的个数。

    解法:容易想到dp[i][j]以表示第i个元素结尾,lis为j的数量,状态转移方程:dp[i][k] = ∑dp[j][k-1] 1<=j< i, a[j] < a[i]. 时间复杂度为O(n3)会超时。

    树状数组优化。构造dp[a[i]][j]以a[i]这个数结尾的lis长度为j的数量。因为a[i]数据范围1e9太大需要离散化。树状数组维护dp[a[i]][j] = dp[a[i]-1][j-1] + ..... dp[1][j-1]。1到a[i]-1 lis长度为j-1的数量

    https://www.cnblogs.com/dilthey/p/9898230.html

    //#include<bits/stdc++.h>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <iostream>
    #include <string>
    #include <stdio.h>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <string.h>
    #include <vector>
    #include <stdlib.h>
    using namespace std;
    typedef long long ll ;
    #define int ll
    #define mod 1000000007
    #define gcd(m,n) __gcd(m, n)
    #define rep(i , j , n) for(int i = j ; i <= n ; i++)
    #define red(i , n , j)  for(int i = n ; i >= j ; i--)
    #define ME(x , y) memset(x , y , sizeof(x))
    //int lcm(int a , int b){return a*b/gcd(a,b);}
    //ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;}
    //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;}
    //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len}
    #define INF  0x3f3f3f3f
    #define PI acos(-1)
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define lson l,mid,root<<1
    #define rson mid+1,r,root<<1|1
    #define pb push_back
    #define mp make_pair
    #define all(v) v.begin(),v.end()
    #define size(v) (int)(v.size())
    #define cin(x) scanf("%lld" , &x);
    const int N = 1e6+9;
    const int maxn = 1e3+5;
    const double esp = 1e-6;
    int a[maxn] , b[maxn] , len;
    int dp[maxn][maxn];
    int cnt ;
    int n , m ;
    int lowerbit(int x){
        return x&(-x);
    }
    void add(int x , int y , int val){
        while(x <= len){
            dp[x][y] += val;
            dp[x][y] %= mod;
            x += lowerbit(x);
        }
    }
    int getsum(int x , int y){
        int ans = 0 ;
        while(x){
            ans += dp[x][y];
            ans %= mod ;
            x -= lowerbit(x);
        }
        return ans ;
    }
    
    void solve(){
        ME(dp , 0);
    
        scanf("%lld%lld" , &n , &m);
        rep(i , 1 , n){
            scanf("%lld" , &a[i]);
            b[i] = a[i];
        }
        sort(b+1 , b+1+n);
        len = unique(b+1 , b+1+n) - b - 1 ;
        rep(i , 1 , n){
            rep(j , 1 , m){
                int pos = lower_bound(b+1 , b+1+len , a[i]) - b ;
                if(j == 1){
                    add(pos , j , 1);
                }else{
                    add(pos , j , getsum(pos-1 , j-1));
                }
            }
        }
        cout << "Case #" << ++cnt << ": " << getsum(len , m) << endl;
    }
    
    signed main()
    {
        //ios::sync_with_stdio(false);
        int t ;
        cin >> t ;
        while(t--){
            solve();
        }
    }
    
  • 相关阅读:
    JavaScript与C# Windows应用程序交互
    用DateTime.ToString(string format)输出不同格式的日期
    时间间隔与暂停
    C#中比较两个时间的时间差
    lambda函数的用法
    Tornado笔记
    DjangoWeb应用开发实战笔记
    再看装饰器
    描述符
    flask简单代码回顾
  • 原文地址:https://www.cnblogs.com/nonames/p/12554302.html
Copyright © 2011-2022 走看看