题目链接
题意:n个人编号1-n,有m种限制关系,u、v表示u必须在v前面,编号小尽量放前面。给出编号顺序。
解法:建立一个反图,跑一边字典序最大的拓扑排序,最后再把这个排序倒过来就是答案了。
参考博客
#include<bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <string>
#include <stdio.h>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string.h>
#include <vector>
#include <stdlib.h>
#include <time.h>
using namespace std;
typedef long long ll ;
#define int ll
#define mod 10000
#define gcd __gcd
#define rep(i , j , n) for(int i = j ; i <= n ; i++)
#define red(i , n , j) for(int i = n ; i >= j ; i--)
#define ME(x , y) memset(x , y , sizeof(x))
//int lcm(int a , int b){return a*b/gcd(a,b);}
//ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;}
//int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;}
//const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len}
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define pii pair<int,int>
#define fi first
#define se second
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define pb push_back
#define mp make_pair
#define all(v) v.begin(),v.end()
#define size(v) (int)(v.size())
#define cin(x) scanf("%lld" , &x);
const int N = 11;
const int maxn = 3e4+9;
const double esp = 1e-6;
int in[maxn] , n, m;
vector<int>g[maxn];
void init(){
ME(in , 0);
rep(i , 1 , n){
g[i].clear();
}
}
void tuopu(){
vector<int>ans;
priority_queue<int>q;
rep(i , 1 , n){
if(!in[i]){
q.push(i);
}
}
while(!q.empty()){
int u = q.top();q.pop();
ans.pb(u);
for(auto &v : g[u]){
in[v]--;
if(!in[v]){
q.push(v);
}
}
}
for(int i = size(ans)-1 ; i > 0 ; i--)
cout << ans[i] << " ";
cout << ans[0] << endl;
}
void solve(){
scanf("%lld%lld" , &n , &m);
init();
rep(i , 1 , m){
int u , v;
scanf("%lld%lld" , &u , &v);
g[v].pb(u);
in[u]++;
}
tuopu();
}
signed main()
{
//ios::sync_with_stdio(false);
int t ;
scanf("%lld" , &t);
while(t--)
solve();
}