zoukankan      html  css  js  c++  java
  • [CF960G] Bandit Blues

    problem

    求满足(sum_i[p_i=max_{j=1}^i p_j]=a)(sum_i[p_i=max_{j=i}^n p_j]=b)的1到n的排列p的个数。

    solution

    设f[i,j]为从大到小地向序列中加入i个数,形成了j个前缀最大值的情况,转移有

    [egin{aligned} f[0,0]=1,&&f[i,j]=f[i-1,j-1]+(i-1)f[i-1,j] end{aligned} ]

    显然这恰是第一类斯特林数,即(f[i,j]=s(i,j))

    一个数集与一个操作方案能对应一个序列。考虑枚举数n的位置,那么答案为

    [sum_{i=1}^ns(i-1,a-1)s(n-i,b-1) imes C(n-1,i-1) ]

    这相当于是把1到n-1给分成a+b-2个环的方案数(其中环有两类,每类分别由a+1个和b+1个)即答案

    [s(n-1,a+b-2) imes C(a+b-2,a-1) ]

    至此问题已完结。

    #include <bits/stdc++.h>
    #define ll long long 
    using namespace std;
    
    const int N=2e5+10;
    const int mod=998244353;
    const int inf=0x3f3f3f3f;
    
    inline ll qpow(ll x,ll y) {
    	ll c=1;
    	for(; y; y>>=1,x=x*x%mod)
    		if(y&1) c=x*c%mod;
    	return c;
    }
    int p,pcur,rev[N];
    inline void ntt_init(int len) {
    	for(p=1,pcur=0; p<(len<<1);) p<<=1,pcur++;
    	for(int i=0; i<p; ++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(pcur-1));
    }
    inline void ntt(ll*a,int tp) {
    	for(int i=0; i<p; ++i) if(i<rev[i]) swap(a[i],a[rev[i]]);
    	for(int m=1; m<p; m<<=1) {
    		int wm=qpow(3,(mod-1)/(m<<1)); if(tp<0) wm=qpow(wm,mod-2);
    		for(int i=0; i<p; i+=(m<<1)) { ll w=1,tmp;
    			for(int j=0; j<m; ++j,w=w*wm%mod) {
    				tmp=w*a[i+j+m]%mod;
    				a[i+j+m]=(a[i+j]-tmp+mod)%mod;
    				a[i+j]=(a[i+j]+tmp)%mod;
    			}
    		} 
    	}
    	if(tp<0) {
    		ll tmp=qpow(p,mod-2);
    		for(int i=0; i<p; ++i) a[i]=tmp*a[i]%mod;
    	}
    }
    inline void chm(ll*A,ll*B) {
    	ntt(A,1); ntt(B,1);
    	for(int i=0; i<p; ++i) (A[i]*=B[i])%=mod;
    	ntt(A,-1); 
    }
    ll fac[N],fav[N],A[N],B[N];
    void calc(int n,ll*s) {
    	if(n==0) {s[0]=1; return;}
    	if(n==1) {s[1]=1; return;}
    	int m(n/2); calc(m,s); ntt_init(m+1);
    	for(int i=0; i<=m; ++i) A[m-i]=fac[i]*s[i]%mod;
    	for(int i=0; i<=m; ++i) B[i]=fav[i]*qpow(m,i)%mod;
    	for(int i=m+1; i<p; ++i) A[i]=B[i]=0;
    	chm(A,B);
    	for(int i=0; i<=m; ++i) B[i]=A[m-i]*fav[i]%mod;
    	for(int i=0; i<=m; ++i) A[i]=s[i];
    	for(int i=m+1; i<p; ++i) A[i]=B[i]=0;
    	chm(A,B);
    	for(int i=0; i<=m+m; ++i) s[i]=A[i];
    	if(n&1)
    	for(int i=n; i>=0; --i) s[i]=((i?s[i-1]:0)+(n-1)*s[i]%mod)%mod;
    }
    
    ll s[N];
    int main() {
    	fac[0]=fac[1]=fav[0]=fav[1]=1;
    	for(int i=2; i<N; ++i) fav[i]=fav[mod%i]*(mod-mod/i)%mod;
    	for(int i=2; i<N; ++i) fav[i]=fav[i-1]*fav[i]%mod,fac[i]=fac[i-1]*i%mod;
    	//int n; scanf("%d",&n); calc(n,s);
    	//for(int i=0; i<=n; ++i) printf("s(%d,%d)=%d
    ",n,i,s[i]);
    	int n,a,b;
    	scanf("%d%d%d",&n,&a,&b);
    	calc(n-1,s);
    	printf("%lld",fac[a+b-2]*fav[a-1]%mod*fav[b-1]%mod*s[a+b-2]%mod);
    	return 0;
    }
    
  • 相关阅读:
    Python中的单例模式
    硬件资产管理系统总结
    浏览器同源策略之JSONP、CORS
    设置全局的csrf跨站请求伪造
    keystone命令与client接口学习
    实验室双显示屏安装使用记录
    redhat 5.4 下rabbitMQ单机安装.md
    Android Studio Connection refused: connect 错误解决
    Add Google Maven repository and sync project
    Java向上转型和向下转型
  • 原文地址:https://www.cnblogs.com/nosta/p/10972968.html
Copyright © 2011-2022 走看看