zoukankan      html  css  js  c++  java
  • 【转】ChainMapper 实例理解一

    通过ChainMapper可以将多个map类合并成一个map任务。

    下面个这个例子没什么实际意思,但是很好的演示了ChainMapper的作用。

    源文件
    100 tom 90
    101 mary 85
    102 kate 60

    map00的结果,过滤掉100的记录
    101 mary 85
    102 kate 60

    map01的结果,过滤掉101的记录
    102 kate 60

    reduce结果
    102 kate 60

    import java.io.IOException;
    import java.util.*;
    import java.lang.String;
    
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.conf.*;
    import org.apache.hadoop.io.*;
    import org.apache.hadoop.mapred.*;
    import org.apache.hadoop.util.*;
    import org.apache.hadoop.mapred.lib.*;
    
    public class WordCount
    {
    
        public static class Map00 extends MapReduceBase implements Mapper
        {
    
            public void map(Text key, Text value, OutputCollector output, Reporter reporter) throws IOException
            {
    
                Text ft = new Text(“100″);
    
                if(!key.equals(ft))
                {
                    output.collect(key, value);
                }
            }
        }
    
        public static class Map01 extends MapReduceBase implements Mapper
        {
    
            public void map(Text key, Text value, OutputCollector output, Reporter reporter) throws IOException
            {
    
                Text ft = new Text(“101″);
    
                if(!key.equals(ft))
                {
                    output.collect(key, value);
                }
            }
        }
    
        public static class Reduce extends MapReduceBase implements Reducer
        {
            public void reduce(Text key, Iterator values, OutputCollector output, Reporter reporter) throws IOException
            {
    
                while(values.hasNext())
                {
                    output.collect(key, values.next());
                }
    
            }
        }
    
        public static void main(String[] args) throws Exception
        {
    
            JobConf conf = new JobConf(WordCount.class);
            conf.setJobName(“wordcount00″);
    
            conf.setInputFormat(KeyValueTextInputFormat.class);
            conf.setOutputFormat(TextOutputFormat.class);
    
            ChainMapper cm = new ChainMapper();
    
            JobConf mapAConf = new JobConf(false);
            cm.addMapper(conf, Map00.class, Text.class, Text.class, Text.class, Text.class, true, mapAConf);
    
            JobConf mapBConf = new JobConf(false);
            cm.addMapper(conf, Map01.class, Text.class, Text.class, Text.class, Text.class, true, mapBConf);
    
            conf.setReducerClass(Reduce.class);
    
            conf00.setOutputKeyClass(Text.class);
            conf00.setOutputValueClass(Text.class);
    
            FileInputFormat.setInputPaths(conf, new Path(args[0]));
            FileOutputFormat.setOutputPath(conf, new Path(args[1]));
    
            JobClient.runJob(conf);
    
        }
    }

    总结:

      1.一句话:ChainMapper即在Reduce之前进行多次Mapper

      2.ChainMapper必须保证所有的子mapper输入输出是一致的!

      3.ChainMapper中的子mapper是线性执行的

  • 相关阅读:
    nginx upstream负载均衡配置
    什么是任务编排、服务发现、服务间依赖怎么处理?
    python celery 错误重试配置
    rust cargo 从入门到放弃
    python 日志模块再熟悉
    python signal笔记
    Fabric使用笔记
    webpack 笔记
    sphinx-python文档化
    Docker笔记
  • 原文地址:https://www.cnblogs.com/not-NULL/p/5073926.html
Copyright © 2011-2022 走看看