Problem POJ - 1284- Primitive Roots
Time Limit: 1000 mSec
Problem Description
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (x i mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23
31
79
Sample Output
10
8
24
题解:考察原根的性质,首先给出原根存在的充要条件:
N = 1, 2, 4, p^a, 2p^a
这里的n是奇素数,所以原根必定存在,再有定理:
若n得原根存在,则n得原根个数为phi(phi(n))
百度到一个关于奇素数情况的证明,在此mark一下:
对于给出的素数p,
首先要明确一点:p的元根必然是存在的(这一点已由Euler证明,此处不再赘述),因此,不妨设其中的一个元根是a0(1<=a0<=p-1)
按照题目的定义,a0^i(1<=i<=p-1) mod p的值是各不相同的,再由p是素数,联系Fermat小定理可知:q^(p-1) mod p=1;(1<=q<=p-1)(这个在下面有用)
下面证明,如果b是p的一个异于a的元根,不妨令b与a0^t关于p同余,那么必然有gcd(t,p-1)=1,亦即t与p-1互质;反之亦然;
证明:
若d=gcd(t,p-1)>1,令t=k1*d,p-1=k2*d,则由Fermat可知
(a0^(k1*d))^k2 mod p=(a0^(k2*d))^(k1) mod p=(a0^(p-1))^(k1) mod p=1
再由b=a0^t (mod p),结合上面的式子可知:
(a0^(k1*d))^k2 mod n=b^k2 mod p=1;
然而b^0 mod p=1,所以b^0=b^k2 (mod p),所以b^i mod p的循环节=k2<p-1,因此这样的b不是元根;
再证,若d=gcd(t,p-1)=1,即t与p-1互质,那么b必然是元根;
否则假设存在1<=j<i<=p-1,使得b^j=b^i (mod p),即a0^(j*t)=a0^(i*t) (mod p),由a0是元根,即a0的循环节长度是(p-1)可知,(p-1) | (i*t-j*t)->(p-1) | t*(i-j),由于p与
t互质,所以(p-1) | (i-j),但是根据假设,0<i-j<p-1,得出矛盾,结论得证;
由上面的两个证明可知b=a0^t (mod p),是一个元根的充要条件是t与p-1互质,所有的这些t的总个数就是Phi(p-1);
1 //#include <bits/stdc++.h> 2 #include <iostream> 3 #include <cmath> 4 5 using namespace std; 6 7 #define REP(i, n) for (int i = 1; i <= (n); i++) 8 #define sqr(x) ((x) * (x)) 9 10 const int maxn = 10; 11 const int maxm = 200000 + 10; 12 const int maxs = 52; 13 14 typedef long long LL; 15 //typedef pair<int, int> pii; 16 //typedef pair<double, double> pdd; 17 18 const LL unit = 1LL; 19 const int INF = 0x3f3f3f3f; 20 const LL Inf = 0x3f3f3f3f3f3f3f3f; 21 const double eps = 1e-14; 22 const double inf = 1e15; 23 const double pi = acos(-1.0); 24 const LL mod = 1000000007; 25 26 LL get_phi(LL n) 27 { 28 LL ans = n; 29 LL m = sqrt(n + 0.5); 30 for (LL i = 2; i <= m; i++) 31 { 32 if (n % i == 0) 33 { 34 while (n % i == 0) 35 { 36 n /= i; 37 } 38 ans = ans * (i - 1) / i; 39 } 40 } 41 if (n > 1) 42 ans = ans * (n - 1) / n; 43 return ans; 44 } 45 46 int main() 47 { 48 ios::sync_with_stdio(false); 49 cin.tie(0); 50 //freopen("input.txt", "r", stdin); 51 //freopen("output.txt", "w", stdout); 52 LL p; 53 while (cin >> p) 54 { 55 cout << get_phi(p - 1) << endl; 56 } 57 return 0; 58 }