Time Limit: 1000 mSec
Problem Description
We say that a set S = {x1, x2, ..., xn} is factor closed if for any xi ∈ S and any divisor d of xi we have d ∈ S. Let’s build a GCD matrix (S) = (sij), where sij = GCD(xi, xj) – the greatest common divisor of xi and xj. Given the factor closed set S, find the value of the determinant:
Input
The input file contains several test cases. Each test case starts with an integer n (0 < n < 1000), that stands for the cardinality of S. The next line contains the numbers of S: x1, x2, ..., xn. It is known that each xi is an integer, 0 < xi < 2*10 9. The input data set is correct and ends with an end of file.
Output
For each test case find and print the value Dn mod 1000000007.
Sample Input
2
1 2
3
1 3 9
4
1 2 3 6
Sample Output
1
12
4
题解:这种结论题真是顶不住,记录下来当作积累吧,题目是在UVALive上交的,POJ的编译器实在有点老。。。
附上大佬的链接,有gcd矩阵的相关结论:
https://zhuanlan.zhihu.com/p/53447466
1 #include <bits/stdc++.h> 2 3 using namespace std; 4 5 #define REP(i, n) for (int i = 1; i <= (n); i++) 6 #define sqr(x) ((x) * (x)) 7 8 const int maxn = 1000 + 10; 9 const int maxm = 200000 + 10; 10 const int maxs = 8; 11 12 typedef long long LL; 13 typedef pair<int, int> pii; 14 typedef pair<double, double> pdd; 15 16 const LL unit = 1LL; 17 const int INF = 0x3f3f3f3f; 18 const LL Inf = 0x3f3f3f3f3f3f3f3f; 19 const double eps = 1e-14; 20 const double inf = 1e15; 21 const double pi = acos(-1.0); 22 const LL mod = 1000000007; 23 24 LL get_phi(LL n) 25 { 26 LL ans = n; 27 LL m = sqrt(n + 0.5); 28 for(LL i = 2; i <= m; i++) 29 { 30 if(n % i == 0) 31 { 32 while(n % i == 0) 33 { 34 n /= i; 35 } 36 ans = ans * (i - 1) / i; 37 } 38 if(n == 1) 39 break; 40 } 41 if(n > 1) 42 ans = ans * (n - 1) / n; 43 return ans; 44 } 45 46 int n; 47 LL x; 48 49 int main() 50 { 51 ios::sync_with_stdio(false); 52 cin.tie(0); 53 //freopen("input.txt", "r", stdin); 54 //freopen("output.txt", "w", stdout); 55 while(cin >> n) 56 { 57 LL ans = 1; 58 for(int i = 0; i < n; i++) 59 { 60 cin >> x; 61 ans *= get_phi(x); 62 ans %= mod; 63 } 64 cout << ans << endl; 65 } 66 return 0; 67 }