zoukankan      html  css  js  c++  java
  • UVA11212-Editing a Book(迭代加深搜索)

    Problem UVA11212-Editing a Book

    Accept:572  Submit:4428

    Time Limit: 10000 mSec

     Problem Description

    You have n equal-length paragraphs numbered 1 to n. Now you want to arrange them in the order of 1,2,...,n. With the help of a clipboard, you can easily do this: Ctrl-X (cut) and Ctrl-V (paste) several times. You cannot cut twice before pasting, but you can cut several contiguous paragraphs at the same time - they’ll be pasted in order. For example, in order to make {2, 4, 1, 5, 3, 6}, you can cut 1 and paste before 2, then cut 3 and paste before 4. As another example, one copy and paste is enough for {3, 4, 5, 1, 2}. There are two ways to do so: cut {3, 4, 5} and paste after {1, 2}, or cut {1, 2} and paste before {3, 4, 5}.

     Input

    The input consists of at most 20 test cases. Each case begins with a line containing a single integer n (1 < n < 10), thenumber of paragraphs. The next line contains a permutation of 1,2,3,...,n. The last case is followed by a single zero, which should not be processed.

     Output

    For each test case, print the case number and the minimal number of cut/paste operations.

     Sample Input

    6
    2 4 1 5 3 6
    5
    3 4 5 1 2
    0
     

     Sample Ouput

    Case 1: 2

    Case 2: 1

    题解:第一到IDA*算法的题目。迭代加深搜索,就是在普通DFS上加了个深度限制,如果目前的深度无法得到结果,就让深度限制变大,直到找到解。该算法中最重要的就是估价函数,用该函数进行剪枝操作,当前深度为d,如果最理想的情况下还要搜索h层,那么当d+h > maxd时显然就可以剪枝,其余部分和普通dfs区别不大。

    续:今天对这道题又进行了一个小小的尝试,收获很大。之所以对它进行二次尝试,主要是因为第一次写时按照lrj的思路copy的,想真正自己实现一次,这次实现完全以lrj在讲解该算法时的思路为框架进行code,dfs第一步判断深度是否达到maxd,达到了就进行判断是否成立,返回信息。关键在于下一步的是先枚举还是先剪枝,如果先剪枝,两个代码的效率几乎没有差距,如果先枚举,直接TLE,这份代码用时640ms而限制是10000ms,这一个顺序使得效率差了十倍不止,仔细想了想,先剪枝与后剪枝相比,把剪枝操作提前了一层,对于每一层都有很多节点的搜索来说是很不划算的。千万注意这个顺序!!!

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cstdlib>
     5 #include <algorithm>
     6 
     7 using namespace std;
     8 
     9 const int maxn = 9;
    10 int n,order[maxn];
    11 int maxd;
    12 
    13 int cal() {
    14     int cnt = 0;
    15     for (int i = 0; i < n-1; i++) {
    16         if (order[i] != order[i + 1] - 1) cnt++;
    17     }
    18     if (order[n - 1] != n) cnt++;
    19     return cnt;
    20 }
    21 
    22 bool is_sorted() {
    23     for (int i = 0; i < n - 1; i++) {
    24         if (order[i] >= order[i + 1]) return false;
    25     }
    26     return true;
    27 }
    28 
    29 bool dfs(int d) {
    30     if (3 * d + cal() > maxd * 3) return false;
    31     if (is_sorted()) return true;
    32 
    33     int old[maxn],now[maxn];
    34     memcpy(old, order, sizeof(order));
    35     for (int i = 0; i < n; i++) {
    36         for (int j = i; j < n; j++) {
    37             int cnt = 0;
    38             for (int k = 0; k < n; k++) {
    39                 if (k < i || k > j) {
    40                     now[cnt++] = order[k];
    41                 }
    42             }
    43             for (int k = 0; k <= cnt; k++) {
    44                 int cnt2 = 0;
    45                 for (int p = 0; p < k; p++) order[cnt2++] = now[p];
    46                 for (int p = i; p <= j; p++) order[cnt2++] = old[p];
    47                 for (int p = k; p < cnt; p++) order[cnt2++] = now[p];
    48                 if (dfs(d + 1)) return true;
    49                 memcpy(order, old, sizeof(order));
    50             }
    51         }
    52     }
    53     return false;
    54 }
    55 
    56 int iCase = 1;
    57 
    58 int main()
    59 {
    60     //freopen("input.txt", "r", stdin);
    61     while (~scanf("%d", &n) && n) {
    62         for (int i = 0; i < n; i++) {
    63             scanf("%d", &order[i]);
    64         }
    65         for (maxd = 0; maxd < n; maxd++) {
    66             if (dfs(0)) break;
    67         }
    68         printf("Case %d: %d
    ", iCase++, maxd);
    69     }
    70     return 0;
    71 }
  • 相关阅读:
    TC配置文件WCMD.INI详解,只能在ini重修改的配置
    Source Insight中的多行注释
    ACE_Timer_Heap_T定时器
    什么是代理服务器
    太阳能传感器目前主要故障问题解决方案
    source insight中文显示和处理
    C#3.0新特性小结(2)
    .NET中事务操作小结(1)
    常用的正则表达式收藏版
    几种流行的Ajax开发框架比较
  • 原文地址:https://www.cnblogs.com/npugen/p/9544995.html
Copyright © 2011-2022 走看看